نتایج جستجو برای: laplacian eigenvalue

تعداد نتایج: 29216  

2015
Zhifu You Bolian Liu ZHIFU YOU BOLIAN LIU

The signless Laplacian separator of a graph is defined as the difference between the largest eigenvalue and the second largest eigenvalue of the associated signless Laplacian matrix. In this paper, we determine the maximum signless Laplacian separators of unicyclic, bicyclic and tricyclic graphs with given order.

Journal: :Australasian J. Combinatorics 2009
Gholam Reza Omidi

In this paper graphs with the largest Laplacian eigenvalue at most 4 are characterized. Using this we show that the graphs with the largest Laplacian eigenvalue less than 4 are determined by their Laplacian spectra. Moreover, we prove that ones with no isolated vertex are determined by their adjacency spectra.

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

Journal: :journal of linear and topological algebra (jlta) 0
m ghorbani department of mathematics, faculty of science, shahid rajaee teacher training university m hakimi-nezhaad department of math., faculty of science, shahid rajaee teacher training university

‎let $g$ be a graph without an isolated vertex‎, ‎the normalized laplacian matrix $tilde{mathcal{l}}(g)$‎‎is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$‎, where ‎$‎mathcal{‎d}‎$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎g‎$‎‎. ‎the eigenvalues of‎‎$tilde{mathcal{l}}(g)$ are ‎called ‎ ‎ as ‎the ‎normalized laplacian ...

2013
Liqun Qi Jia-Yu Shao Qun Wang

In this paper, we show that the largest signless Laplacian H-eigenvalue of a connected k-uniform hypergraph G, where k ≥ 3, reaches its upper bound 2∆(G), where ∆(G) is the largest degree of G, if and only if G is regular. Thus the largest Laplacian H-eigenvalue of G, reaches the same upper bound, if and only if G is regular and oddbipartite. We show that an s-cycle G, as a k-uniform hypergraph...

2013
Fatihcan M. Atay Hande Tunçel

We consider the normalized Laplacian matrix for signed graphs and derive interlacing results for its spectrum. In particular, we investigate the effects of several basic graph operations, such as edge removal and addition and vertex contraction, on the Laplacian eigenvalues. We also study vertex replication, whereby a vertex in the graph is duplicated together with its neighboring relations. Th...

Journal: :Discussiones Mathematicae Graph Theory 2008
Hong-Hai Li Jiong Sheng Li

In this paper, we established a connection between the Laplacian eigenvalues of a signed graph and those of a mixed graph, gave a new upper bound for the largest Laplacian eigenvalue of a signed graph and characterized the extremal graph whose largest Laplacian eigenvalue achieved the upper bound. In addition, an example showed that the upper bound is the best in known upper bounds for some cases.

Journal: :Eur. J. Comb. 2014
Yarong Wu Guanglong Yu Jinlong Shu

Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...

2005
Kinkar Ch. Das R. B. Bapat

We consider weighted graphs, where the edge weights are positive definite matrices. The Laplacian of the graph is defined in the usual way. We obtain an upper bound on the largest eigenvalue of the Laplacian and characterize graphs for which the bound is attained. The classical bound of Anderson and Morley, for the largest eigenvalue of the Laplacian of an unweighted graph follows as a special ...

2010
Gerhard Unger G. Brenn

The aim of the book is to provide an analysis of the boundary element method for the numerical solution of Laplacian eigenvalue problems. The representation of Laplacian eigenvalue problems in the form of boundary integral equations leads to nonlinear eigenvalue problems for related boundary integral operators. The solution of boundary element discretizations of such eigenvalue problems require...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید