نتایج جستجو برای: lax wendroff

تعداد نتایج: 3439  

2004
Akira Kasahara AKIRA KASAHARA

Two finite-difference methods for, geophysical .fluid problems are described, and stability conditions of these schemes arc discussed. These two schemes are formulated based upon a similar procedure given by Lax and Wendroff in order to obtain a second-order accuracy in finite-difference equations. However, the two schemes show remarkable differcnces.io their computational stability. One scheme...

Journal: :J. Comput. Physics 2013
Travis C. Fisher Mark H. Carpenter Jan Nordström Nail K. Yamaleev Charles Swanson

The Lax-Wendroff theorem stipulates that a discretely conservative operator is necessary to accurately capture discontinuities. The discrete operator, however, need not be derived from the divergence form of the continuous equations. Indeed, conservation law equations that are split into linear combinations of the divergence and product rule form and then discretized using any diagonal-norm ske...

2010
Rémi Vaillancourt RÉMI VAILLANCOURT

Necessary and sufficient stability criteria for Friedrichs' scheme and the modified Lax-Wendroff scheme with smooth coefficients are derived by means of Kreiss' Matrix Theorem and the first Stability Theorem of Lax and Nirenberg. In this note we derive necessary and sufficient stability criteria for Friedrichs' scheme and the modified Lax-Wendroff scheme [8] for the hyperbolic system n (1) ". =...

Journal: :J. Applied Mathematics 2013
A. R. Appadu

Three numerical methods have been used to solve the one-dimensional advection-diffusion equation with constant coefficients. This partial differential equation is dissipative but not dispersive. We consider the Lax-Wendroff scheme which is explicit, the Crank-Nicolson scheme which is implicit, and a nonstandard finite difference scheme (Mickens 1991). We solve a 1D numerical experiment with spe...

Journal: :J. Sci. Comput. 2013
He Yang Fengyan Li Jianxian Qiu

The dispersion and dissipation properties of numerical methods are very important in wave simulations. In this paper, such properties are analyzed for Runge-Kutta discontinuous Galerkin methods and Lax-Wendroff discontinuous Galerkin methods when solving the linear advection equation. With the standard analysis, the asymptotic formulations are derived analytically for the discrete dispersion re...

Journal: :Journal of Computational Physics 2019

Journal: :Communications in Mathematical Research 2022

2017
Cengke Shi Chi-Wang Shu

Abstract. In this paper we introduce a definition of the local conservation property for numerical methods solving time dependent conservation laws, which generalizes the classical local conservation definition. The motivation of our definition is the Lax-Wendroff theorem, and thus we prove it for locally conservative numerical schemes per our definition in one and two space dimensions. Several...

2010
A. R. Gourlay J. LI. Morris

is obtained where A (u) is the Jacobian matrix of the components of / with respect to the components of u. Equation (1.2) is said to be hyperbolic if the eigenvalues of the matrix pi + 6A are real for all real numbers m, 0. Several authors have proposed finite-difference schemes for the numerical integration of (1.1) (or (1.2)). In [6], Lax and Wendroff introduced an explicit scheme which is st...

Journal: :SIAM J. Scientific Computing 2005
Hans De Sterck Thomas A. Manteuffel Stephen F. McCormick Luke N. Olson

Least-squares finite element methods (LSFEMs) for the inviscid Burgers equation are studied. The scalar nonlinear hyperbolic conservation law is reformulated by introducing the flux vector, or the associated flux potential, explicitly as additional dependent variables. This reformulation highlights the smoothness of the flux vector for weak solutions, namely f(u) ∈ H(div,Ω). The standard least-...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید