نتایج جستجو برای: lie c

تعداد نتایج: 1096052  

Journal: :caspian journal of mathematical sciences 2014
h. azadi kenary a. toorani a. heidarzadegan

‎in this paper‎, ‎using fixed point method‎, ‎we prove the generalized hyers-ulam stability of‎ ‎random homomorphisms in random $c^*$-algebras and random lie $c^*$-algebras‎ ‎and of derivations on non-archimedean random c$^*$-algebras and non-archimedean random lie c$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

Journal: :Center for Migration Studies special issues 1976

Journal: :Communications in Algebra 2009

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the‎ ‎center of $mathcal{A}$‎. ‎A sequence ${L_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in  ‎mathcal{A}$ and all $ngeqslant0$‎. ‎We show that‎ ‎${L_{n}}_{n...

Journal: :Linear Algebra and its Applications 2014

Journal: :Journal of Geometry and Physics 2016

Journal: :bulletin of the iranian mathematical society 0
s. sheikh-mohseni department of mathematics‎, ‎mashhad branch‎, ‎islamic azad university‎, ‎mashhad‎, ‎iran. f. saeedi department of mathematics‎, ‎mashhad branch‎, ‎islamic azad university‎, ‎mashhad‎, ‎iran.

‎let $l$ be a lie algebra‎, ‎$mathrm{der}(l)$ be the set of all derivations of $l$ and $mathrm{der}_c(l)$ denote the set of all derivations $alphainmathrm{der}(l)$ for which $alpha(x)in [x,l]:={[x,y]vert yin l}$ for all $xin l$‎. ‎we obtain an upper bound for dimension of $mathrm{der}_c(l)$ of the finite dimensional nilpotent lie algebra $l$ over algebraically closed fields‎. ‎also‎, ‎we classi...

Journal: :international journal of group theory 2014
max horn seiran zandi

‎‎we exhibit an explicit construction for the second cohomology group‎ ‎$h^2(l‎, ‎a)$ for a lie ring $l$ and a trivial $l$-module $a$‎. ‎we show how the elements of $h^2(l‎, ‎a)$ correspond one-to-one to the‎ ‎equivalence classes of central extensions of $l$ by $a$‎, ‎where $a$‎ ‎now is considered as an abelian lie ring‎. ‎for a finite lie‎ ‎ring $l$ we also show that $h^2(l‎, ‎c^*) cong m(l)$‎...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید