نتایج جستجو برای: lie derivative
تعداد نتایج: 108058 فیلتر نتایج به سال:
The concept of (α, β)-fuzzy Lie algebras over an (α, β)-fuzzy field is introduced. We provide characterizations of an (∈,∈ ∨q)-fuzzy Lie algebra over an (∈,∈ ∨q)-fuzzy field. 2000 MSC: 17B99, 08A72
Let L be a free Lie algebra over a field k, I a non-trivial proper ideal of L, n > 1 an integer. The multiplicator H2(L/I , k) of L/I is not finitely generated, and so in particular, L/I is not finitely presented, even when L/I is finite dimensional.
In this note we study Cartan subalgebras of Lie algebras defined over finite fields. We prove that a possible Lie algebra of minimal dimension without Cartan subalgebras is semisimple. Subsequently, we study Cartan subalgebras of gl(n, F ). AMS classification: 17B50
Some locally finite simple Lie algebras are graded by finite (possibly nonreduced) root systems. Many more algebras are sufficiently close to being root graded that they still can be handled by the techniques from that area. In this paper we single out such Lie algebras, describe them, and suggest some applications of such descriptions.
We study a class of positively graded Lie algebras with a pattern of homogeneous components similar to that of the graded Lie algebra associated to the Nottingham group with respect to its lower central series.
In the present work the properties of Cartan subalgebras and their connection with regular elements in finite dimensional Lie algebras are extended to the case of Leibniz algebras. It is shown that Cartan subalgebras and regular elements of a Leibniz algebra correspond to Cartan subalgebras and regular elements of a Lie algebra by a natural homomorphism. Conjugacy of Cartan subalgebras of Leibn...
1. INTRODUCTION. Some years ago W. Plesken told the first author of a simple but interesting construction of a Lie algebra from a finite group. The authors posed themselves the question as to what the structure of this Lie algebra might be. In particular, for which groups does the construction produce a simple Lie algebra? The answer is given in the present paper; it uses some textbook results ...
The theory of crystal bases introduced by Kashiwara in [4] to study the category of integrable representations of quantized Kac–Moody Lie algebras has been a major development in the combinatorial approach to representation theory. In particular Kashiwara defined the tensor product of crystal bases and showed that it corresponded to the tensor product of representations. Later, in [5] he define...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید