نتایج جستجو برای: liouville fractional derivatives
تعداد نتایج: 167280 فیلتر نتایج به سال:
In this paper, the homotopy perturbation method (HPM) is applied to obtain an approximate solution of the fractional Bratu-type equations. The convergence of the method is also studied. The fractional derivatives are described in the modied Riemann-Liouville sense. The results show that the proposed method is very ecient and convenient and can readily be applied to a large class of fractional p...
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
We state, prove, and discuss new general inequality for convex and increasing functions. As a special case of that general result, we obtain new fractional inequalities involving fractional integrals and derivatives of Riemann-Liouville type. Consequently, we get the inequality of H. G. Hardy from 1918. We also obtain new results involving fractional derivatives of Canavati and Caputo types as ...
In this paper, we tried to evaluate the fractional derivatives by using the Chebyshev series expansion. We discuss the indefinite quadrature rule to estimate the fractional derivatives of Riemann-Liouville type.
This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive and negative fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, con...
In this paper, we further discuss the properties of three kinds of fractional derivatives: the Grünwald–Letnikov derivative, the Riemann–Liouville derivative and the Caputo derivative. Especially, we compare the Riemann–Liouville derivative with the Caputo derivative. And sequential property of the Caputo derivative is also derived, which is helpful in translating the higher fractional-order di...
We correct a recent result concerning the fractional derivative at extreme points. We then establish new results for the Caputo and Riemann-Liouville fractional derivatives at extreme points.
Here we state the main properties of the Caputo, Riemann-Liouville and the Caputo via Riemann-Liouville fractional derivatives and give some general notes on these properties. Some properties given in some recent literatures and used to solve fractional nonlinear partial differential equations will be proved that they are incorrect by giving some counter examples.
The multiindex Mittag-Leffler (M-L) function and the multiindex Dzrbashjan-Gelfond-Leontiev (D-G-L) differentiation and integration play a very pivotal role in the theory and applications of generalized fractional calculus. The object of this paper is to investigate the relations that exist between the Riemann-Liouville fractional calculus and multiindex Dzrbashjan-Gelfond-Leontiev differentiat...
We prove Euler-Lagrange fractional equations and sufficient optimality conditions for problems of the calculus of variations with functionals containing both fractional derivatives and fractional integrals in the sense of Riemann-Liouville.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید