نتایج جستجو برای: maximal 2 rainbow dominating function
تعداد نتایج: 3519966 فیلتر نتایج به سال:
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...
Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G,...
Let D = (V,A) be a finite and simple digraph. A II-rainbow dominating function (2RDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V with f(v) = ∅ the condition ⋃ u∈N−(v) f(u) = {1, 2} is fulfilled, where N−(v) is the set of in-neighbors of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow d...
A Roman dominating function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The minimum of f (V (G)) = ∑ v∈V f (v) over all such functions is called the Roman domination number γR(G). A 2-rainbow dominating function of a graphG is a function g that assigns to each vertex a set of colors chosen from the set {1, 2}, for each vertex v ∈ V (G) such ...
A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2...
Let D = (V,A) be a finite and simple digraph. A k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the set of in-neighbors of v. The weight of a kRDF f is the value ω(f) = ∑ v∈V |f(v...
a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
Let f be a function that assigns to each vertex a subset of colors chosen from a set C = {1, 2, . . . , k} of k colors. If u∈N(v) f (u) = C for each vertex v ∈ V with f (v) = ∅, then f is called a k-rainbow dominating function (kRDF) of G where N(v) = {u ∈ V | uv ∈ E}. The weight of f , denoted by w(f ), is defined as w(f ) = v∈V |f (v)|. Given a graph G, the minimum weight among all weight...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید