نتایج جستجو برای: minkowski inequality

تعداد نتایج: 63453  

2010
ERWIN LUTWAK DEANE YANG GAOYONG ZHANG

As Schneider [50] observes, the classical Brunn-Minkowski theory had its origin at the turn of the 19th into the 20th century, when Minkowski joined a method of combining convex bodies (which became known as Minkowski addition) with that of ordinary volume. One of the core concepts that Minkowski introduced within the Brunn-Minkowski theory is that of projection body (precise definitions to fol...

Journal: :Int. J. Math. Mathematical Sciences 2005
Chang-Jian Zhao Song Leng Gang Lokenath Debnath

The Brunn-Minkowski inequality theory plays an important role in a number of mathematical disciplines such as measure theory, crystallography, optimal control theory, functional analysis, and geometric convexity. It has many useful applications in combinatorics, stochastic geometry, and mathematical economics. In recent years, several authors including Ball [1, 2, 3], Bourgain and Lindenstrauss...

2001
R. J. GARDNER

In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of Rn, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, an...

2015
Arnaud Marsiglietti

We present a simple proof of Christer Borell’s general inequality in the Brunn-Minkowski theory. We then discuss applications of Borell’s inequality to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang. 2010 Mathematics Subject Classification. Primary 28A75, 52A40.

2010
RICHARD J. GARDNER ARTEM ZVAVITCH

A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality, the first of its type, is proved, together with precise equality conditions, and is shown to be the best possible from several points of view. A new Gaussian Brunn-Minkowski inequality is proposed and proved to be true in some significant special cases. Th...

2008
RICHARD J. GARDNER DAVID HARTENSTINE

A dual capacitary Brunn-Minkowski inequality is established for the (n − 1)capacity of radial sums of star bodies in R. This inequality is a counterpart to the capacitary Brunn-Minkowski inequality for the p-capacity of Minkowski sums of convex bodies in R, 1 ≤ p < n, proved by Borell, Colesanti, and Salani. When n ≥ 3, the dual capacitary BrunnMinkowski inequality follows from an inequality of...

2008
RICHARD J. GARDNER ARTEM ZVAVITCH

A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality, the first of its type, is proved, together with precise equality conditions, and shown to be best possible from several points of view. A new Gaussian Brunn-Minkowski inequality is proposed, and proved to be true in some significant special cases. Througho...

2012
Piotr Nayar Tomasz Tkocz

1.1 Brunn-Minkowski inequality 1.1 Theorem. (Brunn-Minkowski, ’88) If A and B are non-empty compact sets then for all λ ∈ [0, 1] we have vol ((1− λ)A+ λB) ≥ (1− λ)(volA) + λ(volB). (B-M) Note that if either A = ∅ orB = ∅, this inequality does not hold since (1−λ)A+λB = ∅. We can use the homogenity of volume to rewrite Brunn-Minkowski inequality in the form vol (A+B) ≥ (volA) + (volB). (1.1) We ...

Journal: :Bulletin of the American Mathematical Society 2002

Journal: :Indagationes Mathematicae 2009

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید