نتایج جستجو برای: miranda thompson majorization
تعداد نتایج: 10394 فیلتر نتایج به سال:
In this paper we show how the Shannon entropy is connected to the theory of majorization. They are both linked to the measure of disorder in a system. However, the theory of majorization usually gives stronger criteria than the entropic inequalities. We give some generalized results for majorization inequality using Csiszár f-divergence. This divergence, applied to some special convex functions...
Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization ( s ) and directional majorization ( ). It is verified that s⇒ ⇒ w , but none of the reciprocal implications is true. Nevertheless, we study the i...
We generalize the classical notion of majorization in Rn to a majorization order for functions defined on a partially ordered set P . In this generalization we use inequalities for partial sums associated with ideals in P . Basic properties are established, including connections to classical majorization. Moreover, we investigate transfers (given by doubly stochastic matrices), complexity issue...
We introduce a partial order, variance majorization, on R, which is analogous to the majorization order. A new class of monotonicity inequalities, based on variance majorization and analogous to Schur convexity, is developed.
Given an approximate invariant subspace we discuss the effectiveness of majorization bounds for assessing the accuracy of the resulting Rayleigh-Ritz approximations to eigenvalues of Hermitian matrices. We derive a slightly stronger result than previously for the approximation of k extreme eigenvalues, and examine some advantages of these majorization bounds compared with classical bounds. From...
We study the Majorization arrow in a big class of quantum adiabatic algorithms. In a quantum adiabatic algorithm, the ground state of the Hamiltonian is a guide state around which the actual state evolves. We prove that for any algorithm of this class, step-by-step majorization of the guide state holds perfectly. We also show that step-by-step majorization of the actual state appears if the run...
Most of the statistical estimation procedures are based on a quite simple principle: find the distribution that, within a certain class, is as similar as possible to the empirical distribution, obtained from the sample observations. This leads to the minimization of some statistical functionals, usually interpreted ad measures of distance or divergence between distributions. In this paper we st...
Majorization is a powerful, easy-to-use and exible tool which arises frequently in quantum mechanics as a consequence of fundamental connections between unitarity and the majorization relation. Entanglement theory does not escape from its in uence. Thus the interconversion of bipartite pure states by means of local manipulations turns out to be ruled to a great extend by majorization relations....
This paper considers the problem of constructing a multidimensional Lorenz dominance relation (MLDR) satisfying normatively acceptable conditions. One of the conditions, Comonotonizing Majorization (CM), is a weaker form of the condition of Correlation Increasing Majorizaton considered in the literature on multidimensional inequality indices. A condition, called Prioritization of Attributes und...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید