نتایج جستجو برای: modified riemann liouville derivative
تعداد نتایج: 328116 فیلتر نتایج به سال:
in this article, we survey the asymptotic stability analysis of fractional differential systems with the prabhakar fractional derivatives. we present the stability regions for these types of fractional differential systems. a brief comparison with the stability aspects of fractional differential systems in the sense of riemann-liouville fractional derivatives is also given.
In this paper, based on the fractional Riccati equation, we propose an extended fractional Riccati sub-equation method for solving fractional partial differential equations. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By a proposed variable transformation, certain fractional partial differential equations are turned into fractional ordinary di...
in this paper, exp-function and (g′/g)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. as a results, some new exact traveling wave solutions are obtained.
The equivalent system for a multiple-rational-order (MRO) fractional differential system is studied, where the fractional derivative is in the sense of Caputo or Riemann-Liouville. With the relationship between the Caputo derivative and the generalized fractional derivative, we can change the MRO fractional differential system with a Caputo derivative into a higher-dimensional system with the s...
approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. in this paper with central difference approximation and newton cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. three...
in this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form d_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0x(0)= x'(0)=0, x'(1)=beta x(xi), where $d_{0^{+}}^{alpha}$ denotes the standard riemann-liouville fractional derivative, 0an illustrative example is also presented.
In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we first obtain the fractional sensitivity equation by means of the digamma function, and then we...
The fractional derivatives in the sense of modified Riemann-Liouville derivative and the improved fractional sub-equation method are employed for constructing the exact solutions of nonlinear fractional partial differential equations. By means of this method, the space-time fractional generalized Hirota-Satsuma coupled Kortewegde Vries equations are successfully solved. As a result, three types...
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید