نتایج جستجو برای: mordell curve
تعداد نتایج: 128705 فیلتر نتایج به سال:
Faltings' theorem states that curves of genus g > 2 have finitely many rational points. Using the ideas of Faltings, Mumford, Parshin and Raynaud, one obtains an upper bound on the upper bound on the number of rational points [Szp85], XI, §2, but this bound is too large to be used in any reasonable sense. In 1985, Coleman showed [Col85] that Chabauty's method, which works when the Mordell-Weil ...
by the mordell-weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. there is no known algorithm for finding the rank of this group. this paper computes the rank of the family $ e_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
In this paper, we construct a point on the Jacobian of a non-hyperelliptic genus four curve which is defined over a quadratic extension of the base field. We then show that this point generates the Mordell–Weil group of the Jacobian of the universal genus four curve.
A polynomial relation f(x, y) = 0 in two variables defines a curve C. If the coefficients of the polynomial are rational numbers then one can ask for solutions of the equation f(x, y) = 0 with x, y ∈ Q, in other words for rational points on the curve. If we consider a non-singular projective model C of the curve then over C it is classified by its genus. Mordell conjectured, and in 1983 Falting...
In this paper, we consider the average size of the 2-Selmer groups of a class of quadratic twists of each elliptic curve over Q with Q-torsion group Z2 × Z2. We prove the existence of a positive proportion of quadratic twists of such a curve, each of which has rank 0 Mordell-Weil group.
We give a formula for the component at p of the p-adic height pairing of a divisor of degree 0 on a hyperelliptic curve. We use this to give a Chabauty-like method for finding p-adic approximations to p-integral points on such curves when the Mordell-Weil rank of the Jacobian equals the genus. In this case we get an explicit bound for the number of such p-integral points, and we are able to use...
By showing that the elliptic curve (x2 13)(y2 13) = 48 has infinitely many rational points, we prove that Letac's construction produces infinitely many genuinely different ideal 9th-order multigrades. We give one (not very small) new example, and, by finding the Mordell-Weil group of the curve, show how to find all examples obtainable by Letac's method.
Let C : Y 2 = anX + · · · + a0 be a hyperelliptic curve with the ai rational integers, n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. We give a completely explicit upper bound for the integral points on the model C, provided we know at least one rational point on C and a Mordell–Weil basis for J(Q). We also explain a powerful refinement of the Mordell–Weil sieve whic...
Let Ep be an elliptic curve over a prime finite field Fp, p ≥ 5, and Pp, Qp ∈ Ep(Fp). The elliptic curve discrete logarithm problem, ECDLP, on Ep is to find mp ∈ Fp such that Qp = mpPp if Qp ∈ 〈Pp〉. We propose an algorithm to attack the ECDLP relying on a Hasse principle detecting linear dependence in Mordell-Weil groups of elliptic curves via a finite number of reductions.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید