نتایج جستجو برای: n f clean ring
تعداد نتایج: 1325221 فیلتر نتایج به سال:
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
in this paper, we introduce a class of $j$-quasipolar rings. let $r$ be a ring with identity. an element $a$ of a ring $r$ is called {it weakly $j$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $j(r)$ and the ring $r$ is called {it weakly $j$-quasipolar} if every element of $r$ is weakly $j$-quasipolar. we give many characterizations and investiga...
Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called...
A ring R is said to be n-clean if every element can be written as a sum of an idempotent and n units. The class of these rings contains clean ring and n-good rings in which each element is a sum of n units. In this paper, we show that for any ring R, the endomorphism ring of a free R-module of rank at least 2 is 2-clean and that the ring B(R) of all ω × ω row and column-finite matrices over any...
Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...
A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.
Let $f:A\rightarrow B$ be a ring homomorphism and $K$ an ideal of $B$. Many variations the notions clean nil-clean rings have been studied by variety authors. We investigate strongly $\pi$-regular clean-like properties amalgamation $A\bowtie^{f}K$ $A$ with $B$ along respect to $f$.
Let R be a commutative local ring. It is proved that R is Henselian if and only if each R-algebra which is a direct limit of module finite R-algebras is strongly clean. So, the matrix ring Mn(R) is strongly clean for each integer n > 0 if R is Henselian and we show that the converse holds if either the residue class field of R is algebraically closed or R is an integrally closed domain or R is ...
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید