نتایج جستجو برای: normalized signless laplacian matrix
تعداد نتایج: 418773 فیلتر نتایج به سال:
Abstract In this paper, we give the spectrum of a matrix by using the quotient matrix, then we apply this result to various matrices associated to a graph and a digraph, including adjacency matrix, (signless) Laplacian matrix, distance matrix, distance (signless) Laplacian matrix, to obtain some known and new results. Moreover, we propose some problems for further research. AMS Classification: ...
We survey properties of spectra of signless Laplacians of graphs and discuss possibilities for developing a spectral theory of graphs based on this matrix. For regular graphs the whole existing theory of spectra of the adjacency matrix and of the Laplacian matrix transfers directly to the signless Laplacian, and so we consider arbitrary graphs with special emphasis on the non-regular case. The ...
This is the third part of our work with a common title. The first [11] and the second part [12] will be also referred in the sequel as Part I and Part II, respectively. This third part was not planned at the beginning, but a lot of recently published papers on the signless Laplacian eigenvalues of graphs and some observations of ours justify its preparation. By a spectral graph theory we unders...
One of the best known results in spectral graph theory is the following lower bound on the chromatic number due to Alan Hoffman, where μ1 and μn are respectively the maximum and minimum eigenvalues of the adjacency matrix: χ ≥ 1+μ1/−μn. We recently generalised this bound to include all eigenvalues of the adjacency matrix. In this paper, we further generalize these results to include all eigenva...
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
Let G be a simple graph with adjacency matrix A (= AG). The eigenvalues and the spectrum of A are also called the eigenvalues and the spectrum of G, respectively. If we consider a matrix Q = D + A instead of A, where D is the diagonal matrix of vertex–degrees (in G), we get the signless Laplacian eigenvalues and the signless Laplacian spectrum, respectively. For short, the signless Laplacian ei...
let $g$ be a graph without an isolated vertex, the normalized laplacian matrix $tilde{mathcal{l}}(g)$is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$, where $mathcal{d}$ is a diagonal matrix whose entries are degree of vertices of $g$. the eigenvalues of$tilde{mathcal{l}}(g)$ are called as the normalized laplacian ...
Recall that, given a graph G, the matrix Q = D + A is called the signless Laplacian, where A is the adjacency matrix and D is the diagonal matrix of vertex degrees. The matrix L = D − A is known as the Laplacian of G. Graphs with the same spectrum of an associated matrix M are called cospectral graphs with respect to M , or M–cospectral graphs. A graph H cospectral with a graph G, but not isomo...
In this paper, various modifications of a connected graph G are regarded as perturbations of its signless Laplacian matrix. Several results concerning the resulting changes to the signless Laplacian spectral radius of G are obtained by solving intermediate eigenvalue problems of the second type. AMS subject classifications: 05C50
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید