نتایج جستجو برای: od characterizable group

تعداد نتایج: 989040  

The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...

Journal: :transactions on combinatorics 2012
mohammad reza darafsheh pedram yousefzadeh

the non commuting graph of a non-abelian finite group $g$ is defined as follows: its vertex set is $g-z(g)$ and two distinct vertices $x$ and $y$ are joined by an edge if and only if the commutator of $x$ and $y$ is not the identity. in this paper we prove some new results about this graph. in particular we will give a new proof of theorem 3.24 of [2]. we also prove that if $g_1$, $g_2$, ..., $...

Journal: :Notre Dame Journal of Formal Logic 2014
Ioannis A. Souldatos

Building on [4], [8] and [9] we study which cardinals are characterizable by a Scott sentence, in the sense that φM characterizes κ, if it has a model of size κ, but not of κ. We show that if אα is characterizable by a Scott sentence and β < ω1, then אα+β is characterizable by a Scott sentence. If 0 < γ < ω1, then the same is true for 2אα+γ . Also, אא0 α is characterizable by a Scott sentence. ...

Let $G$ be a finite group and $pi(G)$ be the set of all the prime‎ ‎divisors of $|G|$‎. ‎The prime graph of $G$ is a simple graph‎ ‎$Gamma(G)$ whose vertex set is $pi(G)$ and two distinct vertices‎ ‎$p$ and $q$ are joined by an edge if and only if $G$ has an‎ ‎element of order $pq$‎, ‎and in this case we will write $psim q$‎. ‎The degree of $p$ is the number of vertices adjacent to $p$ and is‎ ...

Journal: :CoRR 2012
Wei Mao Matthew Thill Babak Hassibi

It is well known that there is a one-to-one correspondence between the entropy vector of a collection of n random variables and a certain group-characterizable vector obtained from a finite group and n of its subgroups [1]. However, if one restricts attention to abelian groups then not all entropy vectors can be obtained. This is an explanation for the fact shown by Dougherty et al [2] that lin...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1377

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

2012
Wei Mao Matthew Thill Babak Hassibi

It is well known that there is a one-to-one correspondence between the entropy vector of a collection of n random variables and a certain group-characterizable vector obtained from a finite group and n of its subgroups [1]. However, if one restricts attention to abelian groups then not all entropy vectors can be obtained. This is an explanation for the fact shown by Dougherty et al [2] that lin...

Journal: :CoRR 2014
Markus Lange-Hegermann

We generalize the differential dimension polynomial from prime differential ideals to characterizable differential ideals. Its computation is algorithmic, its degree and leading coefficient remain differential birational invariants, and it decides equality of characterizable differential ideals contained in each other.

Journal: :J. Symb. Comput. 2008
Oleg Golubitsky

We call a differential ideal universally characterizable, if it is characterizable w.r.t. any ranking on partial derivatives. We propose a factorization-free algorithm that represents a radical differential ideal as a finite intersection of universally characterizable ideals. The algorithm also constructs a universal characteristic set for each universally characterizable component, i.e., a fin...

A. Iranmanesh A. Tehranian B. Ebrahimzadeh H. Parvizi Mosaed

One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property. Let  be a finite group. We denote by  the largest order of elements of . In this paper, we prove that some Suzuki groups are characterizable by order and the largest order of elements. In fact, we prove that if  is a group with  an...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید