نتایج جستجو برای: optimization clustering techniques

تعداد نتایج: 997053  

Journal: :مهندسی صنایع 0
بهروز مینائی دانشیار دانشکده مهندسی کامپیوتر- دانشگاه علم و صنعت ایران محمد فتحیان دانشیار دانشکده مهندسی صنایع- دانشگاه علم و صنعت ایران احمدرضا جعفریان مقدم دانشجوی دکترای دانشکده مهندسی صنایع دانشگاه علم و صنعت ایران و مدیر پروژه توسعه نرم افزار شرکت مهندسی شبکه پویش داده نوین مهدی نصیری دانشجوی دکترای مهندسی کامپیوتر دانشگاه علم و صنعت ایران

clustering technique is one of the most important techniques of data mining and is the branch of multivariate statistical analysis and a method for grouping similar data in to same clusters. with the databases getting bigger, the researchers try to find efficient and effective clustering methods so that they can make fast and real decisions. thus, in this paper, we proposed an improved ant syst...

Journal: :journal of computer and robotics 0
tahereh esmaeili abharian faculty of computer and information technology engineering, qazvin branch, islamic azad university, qazvin, iran mohammad bagher menhaj department of electrical engineering amirkabir university of technology, tehran, iran

knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. due to properly converting the task of optimization to an equivalent...

2009
Harish Kundra Jagdeep Kaur

In order to overcome the shortcomings of traditional clustering algorithms such as local optima and sensitivity to initialization, a new Optimization technique, Particle Swarm Optimization is used in association with Unsupervised Clustering techniques in this paper. This new algorithm uses the capacity of global search in PSO algorithm and solves the problems associated with traditional cluster...

2005
Margarita Reyes Sierra Carlos A. Coello Coello

We propose a new version of a multiobjective coevolutionary algorithm. The main idea of the proposed approach is to concentrate the search effort on promising regions that arise during the evolutionary process as a product of a clustering mechanism applied on the set of decision variables corresponding to the known Pareto front. The proposed approach is validated using several test functions ta...

پایان نامه :0 1392

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...

Journal: :international journal of smart electrical engineering 0
naser ghorbani eastern azarbayjan electric power distribution company ebrahim babaei university of tabriz

this paper proposes the exchange market algorithm (ema) to solve the combined economic and emission dispatch (ceed) problems in thermal power plants. the ema is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. existence of two seeking operators in ema provides a high ability in exploiting global optimum point. in order to show the capabilities ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید