نتایج جستجو برای: outlier detection

تعداد نتایج: 569959  

2014
Kamal Malik

Data Mining simply refers to the extraction of very interesting patterns of the data from the massive data sets. Outlier detection is one of the important aspects of data mining which actually finds out the observations that are deviating from the common expected behavior. Outlier detection and analysis is sometimes known as outlier mining. In this paper, we have tried to provide the broad and ...

2012
Jun Gao Weiming Hu Zhongfei Zhang Ou Wu

Outlier detection is an important and attractive problem in knowledge discovery in large datasets. Instead of detecting an object as an outlier, we study detecting the n most outstanding outliers, i.e. the top-n outlier detection. Further, we consider the problem of combining the top-n outlier lists from various individual detection methods. A general framework of ensemble learning in the top-n...

ژورنال: پژوهش های ریاضی 2022

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

Journal: :Stat 2023

We present definitions and properties of the fast massive unsupervised outlier detection (FastMUOD) indices, used for (OD) in functional data. FastMUOD detects outliers by computing, each curve, an amplitude, magnitude, shape index meant to target corresponding types outliers. Some methods adapting multivariate data are then proposed. These include applying on components using random projection...

2015
Hongbo Zhou Juntao Gao

Outlier detection is a very important type of data mining, which is extensively used in application areas. The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massive data, but also uses lots of machine resources, which results in the imbalance of the machine load. This paper presents an distancebased outlier detection algorithm. These expe...

Journal: :Journal of Statistical Computation and Simulation 2013

2012
Hai-Lei Wang Wen-Bo Li Bing-Yu Sun

In this paper a novel Support vector clustering(SVC) method for outlier detection is proposed. Outlier detection algorithms have application in several tasks such as data mining, data preprocessing, data filter-cleaner, time series analysis and so on. Traditionally outlier detection methods are mostly based on modeling data based on its statistical properties and these approaches are only prefe...

Journal: :Statistical Methods & Applications 2015

2011
Mandar Katdare Warren Jin

Outlier detection in mixed attribute datasets has proved to be a challenging task required in real world applications. Most existing algorithms for outlier detection do not consider the interactions between categorical and numerical attributes. The Pattern based Outlier Detection (POD) algorithm (Zhang & Jin, 2011), has had considerable success in the detecting outliers by analysing such intera...

2013
Shruti Aggarwal

Now day’s Outlier Detection is used in various fields such as Credit Card Fraud Detection, Cyber-Intrusion Detection, Medical Anomaly Detection, and Data Mining etc. So to detect anomaly objects from various types of dataset Outlier Detection techniques are used, that detects and remove the anomaly objects from the dataset. Outliers are the containments that divert from the other objects. Outli...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید