نتایج جستجو برای: quaternion matrices
تعداد نتایج: 77640 فیلتر نتایج به سال:
The well known conjugate gradient algorithm (cg-algorithm), introduced by Hestenes & Stiefel, [1952] intended for real, symmetric, positive definite matrices works as well for complex matrices and has the same typical convergence behavior. It will also work, not generally, but in many cases for hermitean, but not necessarily positive definite matrices. We shall show, that the same behavior is s...
The well known conjugate gradient algorithm (cg-algorithm), introduced by Hestenes & Stiefel, [1952] intended for real, symmetric, positive definite matrices works as well for complex matrices and has the same typical convergence behavior. It will also work, not generally, but in many cases for hermitean, but not necessarily positive definite matrices. We shall show, that the same behavior is s...
We propose a unitary diagonalisation of a special class of quaternion matrices, the socalled η-Hermitian matrices A = AηH , η ∈ {ı, ȷ, κ} arising in widely linear modelling. In 1915, Autonne exploited the symmetric structure of a matrix A = AT to propose its corresponding factorisation (also knownas the Takagi factorisation) in the complex domain C. Similarly, we address the factorisation of an...
The well known conjugate gradient algorithm (cg-algorithm), introduced by Hestenes & Stiefel, [1952] intended for real, symmetric, positive definite matrices works as well for complex matrices and has the same typical convergence behavior. It will also work, not generally, but in many cases for hermitean, but not necessarily positive definite matrices. We shall show, that the same behavior is s...
Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...
Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewhermitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is identified in terms of...
Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewhermitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is identified in terms of...
In this paper, a series of bicomplex representation methods of quaternion division algebra is introduced. We present a new multiplication concept of quaternion matrices, a new determinant concept, a new inverse concept of quaternion matrix and a new similar matrix concept. Under the new concept system, many quaternion algebra problems can be transformed into complex algebra problems to express ...
The research is Supported by Chongqing University postgraduates’ Science and Innovation Fund (200801A 1 A0070266). Abstract The purpose of this paper is to discuss the inequalities for the trace of self-conjugate quaternion matrix. We present the inequality for eigenvalues and trace of self-conjugate quaternion matrices. Based on the inequality above, we obtain several inequalities for the trac...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید