نتایج جستجو برای: ricci soliton
تعداد نتایج: 15590 فیلتر نتایج به سال:
We study stability of non-compact gradient Kähler-Ricci flow solitons with positive holomorphic bisectional curvature. Our main result is that any compactly supported perturbation and appropriately decaying perturbations of the Kähler potential of the soliton will converge to the original soliton under Kähler-Ricci flow as time tends to infinity. To obtain this result, we construct appropriate ...
In this paper, we prove that a complete noncompact non-flat conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. 1. The result A complete Riemannian metric gij on a smooth manifold M n is called a gradient steady Ricci soliton if there exists a smooth function F on M such that the Ricci tensor Rij of the metric gij is given by the Hessian of F : Rij = ∇i∇jF. (1....
In this paper we prove there exists a Kähler-Ricci soliton, unique up to holomorphic automorphisms, on any toric Kähler manifold with positive first Chern class, and the Kähler-Ricci soliton is a Kähler-Einstein metric if and only if the Futaki invariant vanishes.
We establish a link between a connection symmetry, called conformal collineation, and almost Ricci soliton (in particular Ricci soliton) in reducible Ricci symmetric semi-Riemannian manifolds. As a physical application, by investigating the kinematic and dynamic properties of almost Ricci soliton manifolds, we present a physical model of imperfect fluid spacetimes. This model gives a general re...
A Ricci soliton (M, g, v, λ) on a Riemannian manifold (M, g) is said to have concurrent potential field if its potential field v is a concurrent vector field. In the first part of this paper we classify Ricci solitons with concurrent potential fields. In the second part we derive a necessary and sufficient condition for a submanifold to be a Ricci soliton in a Riemannian manifold equipped with ...
In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...
We present a general numerical method for investigating prescribed Ricci curvature problems on toric Kähler manifolds. This method is applied to two generalisations of Einstein metrics, namely Ricci solitons and quasi-Einstein metrics. We begin by recovering the Koiso–Cao soliton and the Lü–Page–Pope quasi-Einstein metrics on CP2]CP (in both cases the metrics are known explicitly). We also find...
Suppose {(M, g(t)), 0 ≤ t <∞} is a Kähler Ricci flow solution on a Fano surface. If |Rm| is not uniformly bounded along this flow, we can blowup at the maximal curvature points to obtain a limit complete Riemannian manifold X. We show that X must have certain topological and geometric properties. Using these properties, we are able to prove that |Rm| is uniformly bounded along every Kähler Ricc...
We prove that any gradient shrinking Ricci soliton has at most Euclidean volume growth. This improves a recent result of H.-D. Cao and D. Zhou by removing a condition on the growth of scalar curvature. A complete Riemannian manifold M of dimension n is called gradient shrinking Ricci soliton if there exists f ∈ C (M) and a constant ρ > 0 such that Rij +∇i∇jf = ρgij , where Rij denotes the Ricci...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید