نتایج جستجو برای: ridge regression method

تعداد نتایج: 1900430  

Journal: :Journal of the Association of Arab Universities for Basic and Applied Sciences 2014

Journal: :Statistica Neerlandica 2005

Journal: :Computational Statistics & Data Analysis 2007

2008
D. E. RAMIREZ

Anomalies persist in the foundations of ridge regression as set forth in Hoerl and Kennard (1970) and subsequently. Conventional ridge estimators and their properties do not follow on constraining lengths of solution vectors using LaGrange’s method, as claimed. Estimators so constrained have singular distributions; the proposed solutions are not necessarily minimizing; and heretofore undiscover...

2004
G. R. Pasha Muhammad Akbar Ali Shah

The main thrust of this paper is to investigate the ridge regression problem in multicollinear data. The properties of ridge estimator are discussed. Variance inflation factors, eigen values and standardization problem are studied through an empirical comparison between OLS and ridge regression method by regressing number of persons employed on five variables. Methods to choose biasing paramete...

2009
D. R. Jensen D. E. Ramirez

Ridge regression is often the method of choice in ill–conditioned systems. A canonical form identifies regions in the parameter space where Ordinary Least Squares (OLS) is problematic. A curious but unrecognized property of ridge solutions emerges: Under spherical errors with or without moments, the relative concentrations of the canonical estimators reverse as the ridge scalar evolves, the est...

2007
D. E. RAMIREZ

Anomalies persist in the foundations of ridge regression as set forth in Hoerl and Kennard (1970) and subsequently. Conventional ridge estimators and their properties do not follow on constraining lengths of solution vectors using LaGrange’s method, as claimed. Estimators so constrained have singular distributions; the proposed solutions are not necessarily minimizing; and heretofore undiscover...

2012
Erika Cule Maria De Iorio

We consider the application of a popular penalised regression method, Ridge Regression, to data with very high dimensions and many more covariates than observations. Our motivation is the problem of out-of-sample prediction and the setting is high-density genotype data from a genome-wide association or resequencing study. Ridge regression has previously been shown to offer improved performance ...

Journal: :Numerical Mathematics: Theory, Methods and Applications 2021

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید