نتایج جستجو برای: right k spectral radius
تعداد نتایج: 838536 فیلتر نتایج به سال:
In this paper, we introduce a procedure for approximating the joint spectral radius of a finite set of matrices with arbitrary precision. Our approximation procedure is based on semidefinite liftings and can be implemented in a recursive way. For two matrices even the first step of the procedure gives an approximation, whose relative quality is at least 1/ √ 2, that is, more than 70%. The subse...
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
A connected graph is called a c-cyclic graph if it contains n vertices and n + c − 1 edges. Let C(n, k, c) denote the class of connected c-cyclic graphs with n vertices and k pendant vertices. Recently, the unique extremal graph, which has greatest (respectively, signless) Laplacian spectral radius, in C(n, k, c) has been determined for 0 ≤ c ≤ 3, k ≥ 1 and n ≥ 2c + k + 1. In this paper, the un...
A connected graph is called a c-cyclic graph if it contains n vertices and n + c − 1 edges. Let C(n, k, c) denote the class of connected c-cyclic graphs with n vertices and k pendant vertices. Recently, the unique extremal graph, which has greatest (respectively, signless) Laplacian spectral radius, in C(n, k, c) has been determined for 0 ≤ c ≤ 3, k ≥ 1 and n ≥ 2c + k + 1. In this paper, the un...
The graphs in this paper are simple. The spectral radius, \(G), of a graph G is the largest eigenvalue of its adjacency matrix A(G). For results on the spectral radii of graphs, the reader is referred to [3, 4, 6] and the references therein. When G is connected, A(G) is irreducible and by the Perron Frobenius Theorem, e.g., [1], the spectral radius is simple and has a unique (up to a multiplica...
A characterization of the joint spectral radius, due to Chen and Zhou, relies on the limit superior of the k-th root of the dominant trace over products of matrices of length k. In this note, a sufficient condition is given such that the limit superior takes the form of a limit. This result is useful while estimating the joint spectral radius. Although it applies to a restricted class of matric...
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
Abstract. A characterization of the joint spectral radius, due to Chen and Zhou, relies on the limit superior of the k-th root of the dominant trace over products of matrices of length k. In this note, a sufficient condition is given such that the limit superior takes the form of a limit. This result is useful while estimating the joint spectral radius. Although it applies to a restricted class...
The joint spectral radius of a set of matrices is a measure of the maximal asymptotic growth rate that can be obtained by forming long products of matrices taken from the set. This quantity appears in a number of application contexts but is notoriously difficult to compute and to approximate. We introduce in this paper a procedure for approximating the joint spectral radius of a finite set of m...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید