نتایج جستجو برای: shearlet frame
تعداد نتایج: 101248 فیلتر نتایج به سال:
Segmentation plays an important role in many preprocessing stages in image processing. Recently, convex relaxation methods for image multi-labeling were proposed in the literature. Often these models involve the total variation (TV) semi-norm as regularizing term. However, it is well-known that the TV functional is not optimal for the segmentation of textured regions. In recent years directiona...
The shearlet representation has gained increasing recognition in recent years as a framework for the efficient representation of multidimensional data. This representation consists of a countable collection of functions defined at various locations, scales and orientations, where the orientations are obtained through the use of shearing matrices. While shearing matrices offer the advantage of p...
Segmentation plays an important role in many preprocessing stages in image processing. Recently, convex relaxation methods for image multi-labeling were proposed in the literature. Often these models involve the total variation (TV) semi-norm as regularizing term. However, it is well-known that the TV functional is not optimal for the segmentation of textured regions. In recent years directiona...
Recently, the research towards Brodatz database for texture classification done at considerable amount of study has been published, the effective classification are vulnerable towards for training and test sets. This study presents the novel texture classification method based on feature descriptor, called spatial cooccurrence with discrete shearlet transformation through the LPboosting classif...
Recently, shearlet groups have received much attention in connection with shearlet transforms applied for orientation sensitive image analysis and restoration. The square integrable representations of the shearlet groups provide not only the basis for the shearlet transforms but also for a very natural definition of scales of smoothness spaces, called shearlet coorbit spaces. The aim of this pa...
This report provides an expository summary of the proof of optimal shearlet approximation (compact support case). We only discuss the non-smooth part of the approximation. For further details, the readers are referred to [1], [2] and the references therein. I. COMPACTLY SUPPORTED SHEARLET FRAME A. Some Notations • parabolic scaling matrices: A2j = 2j 0 0 2 or Ã2j = 2j/2 0 0 2 , for j ...
Driven by an overwhelming amount of applications numerical approximation of partial differential equations was established as one of the core areas in applied mathematics. During the last decades a trend for the solution of PDEs emerged, that focuses on employing systems from applied harmonic analysis for the adaptive solution of these equations. Most notably wavelet systems have been used and ...
Based on the shearlet transform we present a general construction of continuous tight frames for L(R) from any sufficiently smooth function with anisotropic moments. This includes for example compactly supported systems, piecewise polynomial systems, or both. From the results in [5] it follows that these systems enjoy the same desirable approximation properties for directional data as the bandl...
In recent years directional multiscale transformations like the curveletor shearlet transformation have gained considerable attention. The reason for this is that these transforms are unlike more traditional transforms like wavelets able to efficiently handle data with features along edges. The main result confirming this property for shearlets is contained in [21] where it is shown that for ve...
In this paper, we study the relationships of the newly developed continuous shearlet transform with the coorbit space theory. It turns out that all the conditions that are needed to apply the coorbit space theory can indeed be satisfied for the shearlet group. Consequently, we establish new families of smoothness spaces, the shearlet coorbit spaces. Moreover, our approach yields Banach frames f...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید