نتایج جستجو برای: signed total italian k domination number
تعداد نتایج: 2174254 فیلتر نتایج به سال:
Let k ≥ 1 be an integer, and let D = (V, A) be a finite and simple digraph in which dD(v) ≥ k for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total k-dominating function (STkDF) if f(N−(v)) ≥ k for each vertex v ∈ V . The weight w(f) of f is defined by w(f) = ∑ v∈V f(v). The signed total k-domination number for a digraph D is γ kS(D) = min{w(f) | f is a STkDF of D}. In this paper...
A caterpillar is a tree with the property that after deleting all its vertices of degree 1 a simple path is obtained. The signed 2-domination number γ s (G) and the signed total 2-domination number γ st(G) of a graph G are variants of the signed domination number γs(G) and the signed total domination number γst(G). Their values for caterpillars are studied.
A two-valued function f defined on the vertices of a graph G = (V,E), f : V → {−1, 1}, is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. That is, for every v ∈ V, f(N(v)) ≥ 1, where N(v) consists of every vertex adjacent to v. The weight of a total signed dominating function is f(V ) = ∑ f(v), over all vertices v ∈ V . The total ...
For any integer k ≥ 1, a signed (total) k-dominating function is a function f : V (G) → {−1, 1} satisfying w∈N [v] f(w) ≥ k ( P w∈N(v) f(w) ≥ k) for every v ∈ V (G), where N(v) = {u ∈ V (G)|uv ∈ E(G)} and N [v] = N(v)∪{v}. The minimum of the values ofv∈V (G) f(v), taken over all signed (total) k-dominating functions f, is called the signed (total) k-domination number and is denoted by γkS(G) (γ...
A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...
3 A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed domi4 nating function if for any vertex v the sum of function values over its closed neighborhood 5 is at least one. The signed domination number γs(G) of G is the minimum weight of a 6 signed dominating function on G. By simply changing “{+1,−1}” in the above definition 7 to “{+1, 0,−1}”, we can define the minus ...
Let $G=(V,E)$ be a finite and simple graph of order $n$ maximumdegree $\Delta$. A signed strong total Roman dominating function ona $G$ is $f:V(G)\rightarrow\{-1, 1,2,\ldots, \lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the condition that (i) forevery vertex $v$ $G$, $f(N(v))=\sum_{u\in N(v)}f(u)\geq 1$, where$N(v)$ open neighborhood (ii) every forwhich $f(v)=-1$ adjacent to at least one vertex...
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید