نتایج جستجو برای: spion
تعداد نتایج: 289 فیلتر نتایج به سال:
Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cyt...
Multipotent stem cells (SCs) could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanop...
BACKGROUND The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). METHODS The SPION was prepared and coated with PLL as transfection agent...
As with all surgical procedures, implantation comes with the added risk of infection. The goal of this in vitro study was to explore the use of superparamagnetic iron oxide nanoparticles (SPION) as a multifunctional platform to prevent biofilm formation. Results showed for the first time decreased Staphylococcus epidermidis numbers when exposed to 100 microg/ml of SPION for 12 hours and this tr...
Superparamagnetic iron oxide nanoparticles (SPION) have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying addi...
PURPOSE Nano dense-silica (dSiO2) has many advantages such as adjustable core-shell structure, multiple drug delivery, and controllable release behavior. Improving the gastric tumor-specific targeting efficiency based on the development of various strategies is crucial for anti-cancer drug delivery systems. METHODS Superparamagnetic iron oxide nanoparticles (SPION) were coated with dSiO2 as c...
Superparamagnetic iron oxide nanoparticles (SPION), as magnetic resonance (MR) imaging contrast agents or magnetic targeting carriers, have potential applications in diagnostics, imaging, cell and drug/ gene delivery for cardiovascular diseases. SPION are highly magnetic particles that cause magnetic field perturbations, which can be identified on T2* weighted images [1]. Clinically, SPION allo...
Superparamagnetic iron oxide nanoparticles (SPION) have received immense interest for biomedical applications, with the first clinical application as negative contrast agent in magnetic resonance imaging (MRI). However, the first generation MRI contrast agents with dextran-enwrapped, polydisperse iron oxide nanoparticle clusters are limited to imaging of the liver and spleen; this is related to...
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with recombinant human epidermal growth factor (SPION-EGF) were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interacti...
To increase the accumulation of nanocarriers at the tumor site and reduce premature drug leakage, we fabricated alginate modified superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic targeting capability for pH-responsive release of the anticancer drug doxorubicin (DOX) in tumor-cell microenvironments. The drug loading content (DLC) of SPION-4 was as high as 48.98% with a stable si...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید