نتایج جستجو برای: strictly convex quadratic programming
تعداد نتایج: 445355 فیلتر نتایج به سال:
Introduction This paper describes the application of Newton Method for solving strictly convex separable network quadratic programs. The authors provide a brief synopsis of separable network quadratic programming and list the various techniques for solving the same. The main thrust of the paper is succinctly identified by the following: 1. Providing a generic subroutine that can be used by vari...
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
A recurrent neural network called the dual neural network is proposed in this Letter for solving the strictly convex quadratic programming problems. Compared to other recurrent neural networks, the proposed dual network with fewer neurons can solve quadratic programming problems subject to equality, inequality, and bound constraints. The dual neural network is shown to be globally exponentially...
in this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. the proposed algorithm relaxes the accuracy requirements in the solution of the newton equation system, by using an inexact newton direction. furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and...
Optimization problems are not only formed into a linear programming but also nonlinear programming. In real life, often decision variables restricted on integer. Hence, came the nonlinear programming. One particular form of nonlinear programming is a convex quadratic programming which form the objective function is quadratic and convex and linear constraint functions. In this research designed ...
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
Inspired by the geometric reasoning exploited in discrete ellipsoid-based search (DEBS) from the communications literature, we develop a constraint programming (CP) approach to solve problems with strictly convex quadratic constraints. Such constraints appear in numerous applications such as modelling the ground-to-satellite distance in global positioning systems and evaluating the efficiency o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید