نتایج جستجو برای: subtractive clustering

تعداد نتایج: 105490  

2011
J. Hossen

The clustering algorithm hybridization scheme has become of research interest in data partitioning applications in recent years. The present paper proposes a Hybrid Fuzzy clustering algorithm (combination of Fuzzy C-means with extension and Subtractive clustering algorithm) for data classifications applications. The fuzzy c-means (FCM) and subtractive clustering (SC) algorithm has been widely d...

2010
Qun Ren Luc Baron Marek Balazinski Krzysztof Jemielniak

Cutting forces prediction is very important for cutting tool’s design and process planning. This paper presents a fuzzy cutting force modelling method using subtractive clustering for learning evaluation. In this method, subtractive clustering, combined with the least-square algorithm, identifies the fuzzy prediction model directly from the information obtained from the sensors. In the micro-mi...

2009
HU Xiao-song SUN Feng-chun CHENG Xi-ming

To accurately estimate the state of charge of a lithium-ion battery pack used in electric vehicles, a neurofuzzy system is proposed. The subtractive clustering is used to determine the structure and the initial parameters of the neuro-fuzzy system to reduce heuristic errors. The algorithm of adaptive neuro-fuzzy inference (ANFIS) is adopted to optimize the parameters of the neuro-fuzzy system. ...

2015
Zhijia Chen Yuanchang Zhu Yanqiang Di Shaochong Feng

In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze th...

2014
Ramjeet Singh Yadav P. Ahmed A. K. Soni Saurabh Pal

This article presents a study of academic performance evaluation using soft computing techniques inspired by the successful application of K-means, fuzzy C-means (FCM), subtractive clustering (SC), hybrid subtractive clustering-fuzzy C-means (SC-FCM) and hybrid subtractive clustering-adaptive neuro fuzzy inference system (SC-ANFIS) methods for solving academic performance evaluation problems. M...

2011
JI-HANG ZHU HONG-GUANG LI Hong-Guang Li Li Wang

To identify T-S models, this paper presents a so-called “subtractive fuzzy C-means clustering” approach, in which the results of subtractive clustering are applied to initialize clustering centers and the number of rules in order to perform adaptive clustering. This method not only regulates the division of fuzzy inference system input and output space and determines the relative member functio...

2005
Hanifi GULDEMIR Abdulkadir SENGUR

In this paper, a comparative study of classification of the analog modulated communication signals using clustering techniques is introduced. Four different clustering algorithms are implemented for classifying the analog signals. These clustering techniques are K-means clustering, fuzzy c-means clustering, mountain clustering and subtractive clustering. Two key features are used for characteri...

2012

Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Conse...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید