نتایج جستجو برای: ulmin toxin than o ulmi
تعداد نتایج: 2446961 فیلتر نتایج به سال:
The Canadian Ophiostoma Genome Project, which was initiated in 2001, is a collaborative effort between research teams in four different universities. Its general objective is to conduct a large-scale identification and analysis of genes controlling important aspects of the life cycle of Ophiostomatoid fungi. To this end, several expressed sequence tag (EST) libraries were obtained for the Dutch...
Dutch elm disease is caused by the fungal pathogen Ophiostoma novo-ulmi which is transmitted by the native elm bark beetle, Hylurgopinus rufipes. We have found that four semiochemicals (the monoterpene (-)-beta-pinene and the sesquiterpenes (-)-alpha-cubebene, (+)-spiroaxa-5,7-diene and (+)-delta-cadinene) from diseased American elms, Ulmus americana, synergistically attract H. rufipes, and tha...
Despite our increasing recognition of the key role that microbes play in ecosystem processes (e.g., Giller et al. 1997; Mills and Bever 1998; van der Heijden et al. 1998), concern over the loss of biodiversity in ecological communities rarely focuses on microbes— particularly pathogenic microbes which are more often targeted for eradication than preservation (but see Windsor 1995). Yet it is be...
The ascomycete fungus Ophiostoma novo-ulmi is responsible for the pandemic of Dutch elm disease that has been ravaging Europe and North America for 50 years. We proceeded to annotate the genome of the O. novo-ulmi strain H327 that was sequenced in 2012. The 31.784-Mb nuclear genome (50.1% GC) is organized into 8 chromosomes containing a total of 8,640 protein-coding genes that we validated with...
The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp.) in North America and ...
Fungal dimorphism is a complex trait and our understanding of the ability of fungi to display different growth morphologies is limited to a small number of model species. Here we study a highly aggressive dimorphic fungus, the ascomycete Ophiostoma novo-ulmi, which is a model in plant pathology and the causal agent of Dutch elm disease. The two growth phases that this fungus displays, i.e., a y...
Hydrophobins are components of microbial cell walls that contribute tocell surface hydrophobicity. The hydrophobic nature of the surfaces of many microbes, both prokaryotic and eukaryotic, is important to such processes as adhesion of pathogens to host structures and dispersa1 of aerial spores (Beever and Dempsey, 1978; Doyle and Rosenberg, 1990; Stringer et al., 1991). A class of peptide hydro...
Water-soluble glycopeptides isolated from cultures of Ceratocystis ulmi have been reported to be toxins involved in Dutch elm disease. The influence of the glycopeptides on the water relations of Ulmus americana seedlings was tested by placing cut stems in glycopeptide preparations. After 4 hours in 200 micrograms per milliliter toxin the stem conductance of the seedlings was reduced by 79% and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید