نتایج جستجو برای: unicyclic graph
تعداد نتایج: 198174 فیلتر نتایج به سال:
For a graph G, the Merrifield-Simmons index i(G) is defined as the total number of independent sets of the graph G. Let G(n, l, k) be the class of unicyclic graphs on n vertices with girth and pendent vertices being resp. l and k. In this paper, we characterize the unique unicyclic graph possessing prescribed girth and pendent vertices with the maximal Merrifield-Simmons index among all graphs ...
The harmonic index of a graph G is defined as the sum of weights 2 d(u)+d(v) of all edges uv of G, where d(u) and d(v) are the degrees of the vertices u and v in G, respectively. In this paper, we determine the graph with minimum harmonic index among all unicyclic graphs with a perfect matching. Moreover, the graph with minimum harmonic index among all unicyclic graphs with a given matching num...
A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex u0 ∈ V (G) such that G−u0 is a tree. A connected graph G = (V, E) is called a quasi-unicyclic graph if there exists a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph. Set T (n, k) := {G : G is a n-vertex quasi-tree graph with k pendant vertices}, and T (n, d0, k) := {G : G ∈ T (n, k) and there is a vertex ...
A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex u0 ∈ V (G) such that G−u0 is a tree. A connected graph G = (V, E) is called a quasi-unicyclic graph if there exists a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph. Set T (n, k) := {G : G is a n-vertex quasi-tree graph with k pendant vertices}, and T (n, d0, k) := {G : G ∈ T (n, k) and there is a vertex ...
In this paper, we will describe some algorithms and give their complexity as following: (1) The algorithm for finding a dominating set of radius r in a vertex-weighted graph with small number of spanning tress. The complexity of this algorithm for the unicyclic graph is O(m.n). (2) The algorithm for finding an absolute and vertex p-center of a vertex-weighted graph with small number of spanning...
Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex in V is adjacent to a vertex in S and every vertex of V −S is adjacent to a vertex in V −S. The total restrained domination number of G, denoted by γtr(G), is the minimum cardinality of a total restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We sho...
A set S ⊆ V is independent in a graph G = (V,E) if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number α(G) is the cardinality of a maximum independent set, while μ(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a uni...
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, th...
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
The Hosoya index of a (molecular) graph is defined as the total number of the matchings, including the empty edge set, of this graph. Let Un,d be the set of connected unicyclic (molecular) graphs of order n with diameter d. In this paper we completely characterize the graphs from Un,d minimizing the Hosoya index and determine the values of corresponding indices. Moreover, the third smallest Hos...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید