نتایج جستجو برای: vertex friendly
تعداد نتایج: 82292 فیلتر نتایج به سال:
LetG=(V ,E) be a graph, a vertex labeling f : V → Z2 induces an edge labeling f ∗ : E → Z2 defined by f ∗(xy)=f (x)+f (y) for each xy ∈ E. For each i ∈ Z2, define vf (i)=|f−1(i)| and ef (i)=|f ∗−1(i)|. We call f friendly if |vf (1)− vf (0)| 1. The full friendly index set of G is the set of all possible values of ef (1)− ef (0), where f is friendly. In this note, we study the full friendly index...
Let G = (V,E) be a simple graph. An edge labeling f : E → {0, 1} induces a vertex labeling f : V → Z2 defined by f(v) ≡ ∑ uv∈E f(uv) (mod 2) for each v ∈ V , where Z2 = {0, 1} is the additive group of order 2. For i ∈ {0, 1}, let ef (i) = |f−1(i)| and vf (i) = |(f+)−1(i)|. A labeling f is called edge-friendly if |ef (1) − ef (0)| ≤ 1. If (G) = vf (1) − vf (0) is called the edge-friendly index o...
In a Voronoi game, each of κ ≥ 2 players chooses a vertex in a graph G = 〈V(G),E(G)〉. Theutility of a player measures her Voronoi cell: the set of vertices that are closest to her chosenvertex than to that of another player; each vertex contributes uniformly to the utilities of playerswhose Voronoi cells the vertex belongs to. In a Nash equilibrium, unilateral deviation of a player<...
Let G be a graph with vertex set V (G) and edge set E(G), and f be a 0 − 1 labeling of E(G) so that the absolute difference in the number of edges labeled 1 and 0 is no more than one. Call such a labeling f edge-friendly. We say an edge-friendly labeling induces a partial vertex labeling if vertices which are incident to more edges labeled 1 than 0, are labeled 1, and vertices which are inciden...
Let G be a graph with vertex set V and edge set E , and let A be an abelian group. A labeling f : V → A induces an edge labeling f ∗ : E → A defined by f (xy) = f (x) + f (y). For i ∈ A, let v f (i) = card{v ∈ V : f (v) = i} and e f (i) = card{e ∈ E : f (e) = i}. A labeling f is said to be A-friendly if |v f (i)−v f ( j)| ≤ 1 for all (i, j) ∈ A× A, and A-cordial if we also have |e f (i) − e f (...
A graph pebbling move removes two pebbles from a vertex of a graph and adds one pebble to an adjacent vertex. In graph rubbling an additional move is allowed that adds a pebble at a vertex after the removal of one pebble each at two adjacent vertices. A vertex is reachable if a pebble can be moved to the vertex using pebbling/rubbling moves. We study the reachability of vertices under di erent ...
Abstract A binary vertex labeling f : V (G) → Z2 of a graph G is said to be friendly if the number of vertices labeled 0 is almost the same as the number of vertices labeled 1. This friendly labeling induces an edge labeling f∗ : E(G) → Z2 defined by f∗(uv) = f(u)f(v) for all uv ∈ E(G). Let ef (i) = {uv ∈ E(G) : f∗(uv) = i} be the number of edges of G that are labeled i. Productcordial index of...
LetG be a graph with vertex set V (G) and edge setE(G). A labeling f : V (G) → {0, 1} induces an edge labeling f ∗ : E(G) → {0, 1}, defined by f ∗(xy) = |f (x) − f (y)| for each edge xy ∈ E(G). For i ∈ {0, 1}, let ni(f ) = |{v ∈ V (G) : f (v) = i}| and mi(f )=|{e ∈ E(G) : f ∗(e)= i}|. Let c(f )=|m0(f )−m1(f )|.A labeling f of a graphG is called friendly if |n0(f )−n1(f )| 1. A cordial labeling ...
A binary vertex coloring (labeling) f : V (G) → Z2 of a graph G is said to be friendly if the number of vertices labeled 0 is almost the same as the number of vertices labeled 1. This friendly labeling induces an edge labeling f∗ : E(G) → Z2 defined by f∗(uv) = f(u)f(v) for all uv ∈ E(G). Let ef (i) = |{uv ∈ E(G) : f∗(uv) = i}| be the number of edges of G that are labeled i. Product-cordial ind...
0
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید