نتایج جستجو برای: very clean ring
تعداد نتایج: 815450 فیلتر نتایج به سال:
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
It is well known that every uniquely clean ring is strongly clean. In this paper, we investigate the question of when this result holds element-wise. We first construct an example showing that uniquely clean elements need not be strongly clean. However, in case every corner ring is clean the uniquely clean elements are strongly clean. Further, we classify the set of uniquely clean elements for ...
A ring $R$ is a strongly clean ring if every element in $R$ is the sum of an idempotent and a unit that commutate. We construct some classes of strongly clean rings which have stable range one. It is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...
a ring $r$ is strongly clean provided that every element in $r$ is the sum of an idempotent and a unit that commutate. let $t_n(r,sigma)$ be the skew triangular matrix ring over a local ring $r$ where $sigma$ is an endomorphism of $r$. we show that $t_2(r,sigma)$ is strongly clean if and only if for any $ain 1+j(r), bin j(r)$, $l_a-r_{sigma(b)}: rto r$ is surjective. furt...
In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
A ring R is said to be n-clean if every element can be written as a sum of an idempotent and n units. The class of these rings contains clean ring and n-good rings in which each element is a sum of n units. In this paper, we show that for any ring R, the endomorphism ring of a free R-module of rank at least 2 is 2-clean and that the ring B(R) of all ω × ω row and column-finite matrices over any...
Let R be an Abelian exchange ring. We prove the following results: 1. RZ2 and RS3 are clean rings. 2. If G is a group of prime order p and p is in the Jacobson radical of R, then RG is clean. 3. If identity in R is a sum of two units and G is a locally finite group, then every element in RG is a sum of two units. 4. For any locally finite group G, RG has stable range one. All rings in this note...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید