نتایج جستجو برای: weakly compact linear operator
تعداد نتایج: 683911 فیلتر نتایج به سال:
In this note we present necessary and sufficient conditions characterizing conditionally weakly compact sets in the space of (bounded linear) operator valued measures Mba(Σ,L(X,Y )). This generalizes a recent result of the author characterizing conditionally weakly compact subsets of the space of nuclear operator valued measures Mba(Σ,L1(X,Y )). This result has interesting applications in optim...
In the present paper, we introduce the two-wavelet localization operator for the square integrable representation of a homogeneous space with respect to a relatively invariant measure. We show that it is a bounded linear operator. We investigate some properties of the two-wavelet localization operator and show that it is a compact operator and is contained in a...
for a bounded linear operator on hilbert space we define a sequence of the so-called weakly extremal vectors. we study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors. also we show that any quasinilpotent operator $t$ has an hypernoncyclic vector, and so $t$ has a nontrivial hyperinvariant subspace.
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
We establish some versions of fixed-point theorem in a Frechet topological vector space E. The main result is that every map A BC where B is a continuous map and C is a continuous linear weakly compact operator from a closed convex subset of a Frechet topological vector space having the Dunford-Pettis property into itself has fixed-point. Based on this result, we present two versions of the Kra...
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
By using the technique of factoring weakly compact operators through reflexive Banach spaces we prove that a class of ordinary differential equations with Lipschitz continuous perturbations has a strong solution when the problem is governed by a closed linear operator generating a strongly continuous semigroup of compact operators.
Let X be a real separable Banach space. The boundary value problem x′ ∈ A(t)x + F (t, x), t ∈ R+, Ux = a, (B) is studied on the infinite interval R+ = [0,∞). Here, the closed and densely defined linear operator A(t) : X ⊃ D(A)→ X, t ∈ R+, generates an evolution operator W (t, s). The function F : R+×X → 2X is measurable in its first variable, upper semicontinuous in its second and has weakly co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید