نتایج جستجو برای: γ fe2o3 nanoparticles 11 diacetate
تعداد نتایج: 567594 فیلتر نتایج به سال:
Maghemite (γ-Fe2O3) nanoparticles (NPs) can be successfully dispersed in a protic ionic liquid, ethylammonium nitrate (EAN), by transfer from aqueous dispersions into EAN. As the aqueous systems are well controlled, several parameters can be tuned. Their crucial role towards the interparticle potential and the structure of the dispersions is evidenced: (i) the size of the NPs tunes the interpar...
Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180–250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHithresh) ranging from 105% to 140% for temperatures b...
The binding and release of trivalent rare earth element (REE) cations (Dy(3+), Nd(3+) and La(3+)) from solutions by a new fully characterized magnetic nano adsorbent material, consisting of iminodiacetic acid ligand (H2IDA) grafted onto SiO2 covered γ-Fe2O3 nanoparticles, was investigated. The nano adsorbent revealed a slightly higher capacity towards heavier REE and appreciable selectivity, es...
Carbon nanotubes (CNTs) have been the focus of extensive research in recent years due to their exceptional mechanical, thermal, and electrical properties (Treacy et al., 1996; Lourie et al., 1998; Yu et al., 2000; Lukic et al., 2005). As a result of their nanoscale dimensions and high surface area, CNTs could also be considered as efficient templates for the assembly and tethering of nanopartic...
in the past decade, magnetic nanomaterials have attracted much attention due to their physical properties and technological applications. in this work, α-fe2o3 nanoparticles were first synthesized via a simple co-precipitation method using iron chloride hexahydrate (fecl3.6h2o) as precursor and ammonia solution as precipitator. the samples were then characterized by high resolution transmission...
Iron oxide (Fe2O3) is widely used as a catalyst, pigment and gas sensitive material. In this article, α-Fe2O3 nano-rods were first synthesized via a simple chemical method using iron(III) nitrate 9- hydrate (Fe(NO3)3.9H2O) as precursor. XRD pattern showed that the iron oxide nanoparticles exhibited alpha-Fe2O3 (hematite) structure in nanocrystals. The single-phase α- Fe2O3 nano-rods were prepa...
We describe the synthesis of hybrid magnetic ellipsoidal nanoparticles that consist of a mixture of two different iron oxide phases, hematite (α-Fe2O3) and maghemite (γ-Fe2O3), and characterize their magnetic field-driven self-assembly. We demonstrate that the relative amount of the two phases can be adjusted in a continuous way by varying the reaction time during the synthesis, leading to stro...
The structure of nano-crystalline Fe2O3 particles, synthesized using the microwave plasma technique, has been analysed using synchrotron based X-ray absorption spectroscopy and X-ray powder diffraction, as well as transmission electron microscopy. Furthermore, magnetic properties, the crystal structure, and the microstructures are compared and the potential model character of the samples for st...
Extensive studies were devoted to iron oxide nanoparticles (IONPs), in recent years. Iron oxides are chemical compounds that have various polymorphic forms, including maghemite (γ-Fe2O3), magnetite (Fe3O4), and Hematite (α-Fe2O3). Among them, the most important studied is (Fe3O4) due its low cost toxicity, besides unique magnetic physicochemical characteristics which qualified it for use applic...
In this paper we derive and test an extended mass-flow type stochastic particle algorithm for simulating the growth of nanoparticles that are formed in flames and reactors. The algorithm incorporates the effects of coagulation that dominates such systems, along with a particle source and surface growth. We simulate three different configurations for the creation of nanoparticles. The oxidation ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید