نتایج جستجو برای: activation overpotential

تعداد نتایج: 428729  

2017
Guowei He Wei Zhang Yida Deng Cheng Zhong Wenbin Hu Xiaopeng Han

The development of cheap and efficient catalytic electrodes is of great importance, to promote the sluggish overall water-splitting systems associated with the large-scale application of clean and renewable energy technologies. In this work, we report the controlled synthesis of pyrite-type bimetallic Ni-doped CoS2 nanoneedle (NN) arrays supported on stainless steel (SS) (designated as NixCo1−x...

2016
Tom H. J. A. Sleutels Sam D. Molenaar Annemiek Ter Heijne Cees J. N. Buisman

A crucial aspect for the application of bioelectrochemical systems (BESs) as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE). To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type...

Journal: :Science advances 2016
René Becker Saeed Amirjalayer Ping Li Sander Woutersen Joost N H Reek

The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally ...

Journal: :Journal of the American Chemical Society 2017
Pablo Garrido-Barros Carolina Gimbert-Suriñach Dooshaye Moonshiram Antonio Picón Pere Monge Victor S Batista Antoni Llobet

A molecular water oxidation catalyst based on the copper complex of general formula [(Lpy)CuII]2-, 22-, (Lpy is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)CuII]2- water oxidation catalyst, 12- (L is o-phenylenebis(oxamidate)). The catalytic performa...

2014
Manh-Thuong Nguyen Simone Piccinin Nicola Seriani Ralph Gebauer

Defects are unavoidable and usually originate exotic properties in realistic materials. One of the most fundamental defect-induced properties of a solid surface is its reactivity to adsorbed species. Defects in anodes of electrochemical cells for water splitting could therefore play a critical role in the interatomic interactions at the solvent/solid interfaces and hence in determining the cata...

2018
Laurent Liardet Xile Hu

The water-splitting reaction provides a promising mechanism to store renewable energies in the form of hydrogen fuel. The oxidation half-reaction, the oxygen evolution reaction (OER), is a complex four-electron process that constitutes an efficiency bottleneck in water splitting. Here we report a highly active OER catalyst, cobalt vanadium oxide. The catalyst is designed on the basis of a volca...

2016
Hui Pan

Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composit...

Journal: :Dalton transactions 2016
Shawn C Eady Tanya Breault Levi Thompson Nicolai Lehnert

Penta-coordinate iron carbonyl complexes that are built around the rigid Fe(PNP) motif (PNP = (C6H5)2PN(R)P(C6H5)2) are synthesized and structurally and spectroscopically characterized. These complexes allow for facile customization of the secondary ligand sphere with various types of linkers and functional groups. The new [Fe(S2C6H4)(PNP)(CO)] complexes show dihydrogen production electrocataly...

Journal: :ChemSusChem 2011
Kevin Sivula Florian Le Formal Michael Grätzel

Photoelectrochemical (PEC) cells offer the ability to convert electromagnetic energy from our largest renewable source, the Sun, to stored chemical energy through the splitting of water into molecular oxygen and hydrogen. Hematite (α-Fe(2)O(3)) has emerged as a promising photo-electrode material due to its significant light absorption, chemical stability in aqueous environments, and ample abund...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2017
Haiqing Zhou Fang Yu Jingying Sun Ran He Shuo Chen Ching-Wu Chu Zhifeng Ren

Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst cons...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید