نتایج جستجو برای: autoregressive integrated moving average arima
تعداد نتایج: 737312 فیلتر نتایج به سال:
We examine recursive out-of-sample forecasting of monthly postwar U.S. core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading indicators associated with macroeconomic activity and monetary conditions for forecasting horizons up to two years....
This paper develops a general asymptotic theory for the estimation of strictly stationary and ergodic time series models. Under simple conditions that are straightforward to check, we establish the strong consistency, the rate of strong convergence and the asymptotic normality of a general class of estimators that includes LSE, MLE, and some M-type estimators. As an application, we verify the a...
Abstract Evapotranspiration (ET) is an important process in the hydrological cycle and needs to be accurately quantified for proper irrigation scheduling and optimal water resources systems operation. The time variant characteristics of ET necessitate the need for forecasting ET. In this paper, two techniques, namely a seasonal ARIMA model and Winter's exponential smoothing model, have been inv...
Support Vector Regression (SVR) has been widely applied in time series forecasting. Considering long term predictions, iterative predictions perform many one-step-ahead predictions until the desired horizon is achieved. This process accumulates the error from previous predictions and may affect the quality of forecasts. In order to improve long term iterative predictions a hybrid multiple Autor...
and Applied Analysis 3 is the order of regular differences and φ(B) and θ(B) are, respectively, defined as follows φ (B) = 1 − φ 1 B − φ 2 B 2 − ⋅ ⋅ ⋅ − φ p B p θ (B) = 1 − θ 1 B − θ 2 B 2 − ⋅ ⋅ ⋅ − θ q B q . (5) Random errors, ε t , are assumed to be independently and identically distributed with a mean of zero and a constant variance of σ, and the roots of φ(x) = 0 and θ(x) = 0 all lie outsid...
We discuss the various sources of error in numerical computations with the use of examples from the literature relevant to time series analysis. We also submit a case where, by manual veri cation, we were able to discover a plausible forecast to be erroneous due to a number of software aws in the XLSTAT addin for Microsoft Excel. Furthermore, after discussing the alternative techniques for impl...
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic volatility process. We develop a Monte Carlo maximum likelihood method to obtain efficient estimates of...
Well-known Box-Jenkins Autoregressive integrated moving average (ARIMA) methodology has virtually dominated analysis of time-series data since 1930s. However, it is applicable to only those data that are either stationary or can be made so. Another limitation is that the resultant model is “Linear”. During the last two decades or so, the area of “Nonlinear time-series” is rapidly growing. Here,...
The Singular Spectrum Analysis (SSA)-Autoregressive Integrated Moving Average (ARIMA) hybrid method is a good combination of forecasting methods to improve accuracy and suitable for economic data that tends have trend seasonal patterns, one which inflation data. purpose this study obtain the results East Kalimantan Province in 2021 using SSA-ARIMA model. SSA-ARIMA(1,1,1) model overall experienc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید