نتایج جستجو برای: bayes

تعداد نتایج: 18649  

2013
ROGER KOENKER Yi

A nonparametric mixture model approach to empirical Bayes compound decisions for the Gaussian location model is compared with a parametric empirical Bayes approach recently suggested by Martin and Walker and several recent more formal Bayes procedures. Martin and Walker (2013) have recently proposed a parametric empirical Bayes procedure for the classical Gaussian compound decision problem in w...

2015
Jun Li Lixin Ding Bo Li

Naive Bayes (NB) classifier is a simple and efficient classifier, but the independent assumption of its attribute limits the application of the actual data. This paper presents an approach called particle swarm optimization-naive Bayes (PSO-NB) which takes advantage of combination particle swarm optimization with naive Bayes for attribute selection to improve naive Bayes classifier. This method...

2010
Albert Bifet Geoff Holmes Bernhard Pfahringer Eibe Frank

Mining of data streams must balance three evaluation dimensions: accuracy, time and memory. Excellent accuracy on data streams has been obtained with Naive Bayes Hoeffding Trees—Hoeffding Trees with naive Bayes models at the leaf nodes—albeit with increased runtime compared to standard Hoeffding Trees. In this paper, we show that runtime can be reduced by replacing naive Bayes with perceptron c...

2013
Ben London Bert Huang Ben Taskar Lise Getoor

We present a new PAC-Bayes generalization bound for structured prediction that is applicable to perturbation-based probabilistic models. Our analysis explores the relationship between perturbation-based modeling and the PAC-Bayes framework, and connects to recently introduced generalization bounds for structured prediction. We obtain the first PAC-Bayes bounds that guarantee better generalizati...

2013
Ilya O. Tolstikhin Yevgeny Seldin

We present a PAC-Bayes-Empirical-Bernstein inequality. The inequality is based on a combination of the PAC-Bayesian bounding technique with an Empirical Bernstein bound. We show that when the empirical variance is significantly smaller than the empirical loss the PAC-Bayes-Empirical-Bernstein inequality is significantly tighter than the PAC-Bayes-kl inequality of Seeger (2002) and otherwise it ...

2006
Olivier François Philippe Leray

The Bayesian network formalism is becoming increasingly popular in many areas such as decision aid or diagnosis, in particular thanks to its inference capabilities, even when data are incomplete. For classification tasks, Naive Bayes and Augmented Naive Bayes classifiers have shown excellent performances. Learning a Naive Bayes classifier from incomplete datasets is not difficult as only parame...

2007
Susan L. Rosenkranz Adrian E. Raftery ISusan L. Rosenkranz

The Bayes factor is employed to select covariates for a hierarchical model applied to a collection of hospital admission counts. Integrals representing the Bayes factor numerator and denominator marginal probabilities are intractable for the model used. We examine three approaches to integral approximation: Laplace approximation, Monte Carlo integration, and a Markov chain Monte Carlo (MCMC) ap...

2014
Ricardo Pong-Wong

BACKGROUND A method for estimating genomic breeding values (GEBV) based on the Horseshoe prior was introduced and used on the analysis of the 16(th) QTLMAS workshop dataset, which resembles three milk production traits. The method was compared with five commonly used methods: Bayes A, Bayes B, Bayes C, Bayesian Lasso and GLUP. METHODS The main difference between the methods is the prior distr...

Journal: :Journal of Machine Learning Research 2016
David Rohde Matthew P. Wand

We introduce the term semiparametric mean field variational Bayes to describe the relaxation of mean field variational Bayes in which some density functions in the product density restriction are pre-specified to be members of convenient parametric families. This notion has appeared in various guises in the mean field variational Bayes literature during its history and we endeavor to unify this...

2003
V. Robles P. Larrañaga J. M. Peña M. S. Pérez E. Menasalvas V. Herves

Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier called naı̈ve Bayes is competitive with state of the art classifiers. This simple approach stands from assumptions of conditional independence among features given the class. Improvements in accuracy of naı̈ve Bayes has been demonstrated by a number of approaches, collectively named semi naı̈ve Bayes classi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید