نتایج جستجو برای: caputos fractional derivative

تعداد نتایج: 120174  

2014
R. HENRÍQUEZ UDITA N. KATUGAMPOLA

The author (Appl. Math. Comput. 218(3):860-865, 2011) introduced a new fractional integral operator given by, ( I a+f ) (x) = ρ1−α Γ(α) ∫ x a τρ−1f(τ) (xρ − τρ)1−α dτ, which generalizes the well-known Riemann-Liouville and the Hadamard fractional integrals. In this paper we present a new fractional derivative which generalizes the familiar Riemann-Liouville and the Hadamard fractional derivativ...

2014
Adem Kılıçman Omer Altun

In this work we study fractional order Sumudu transform. In the development of the definition we use fractional analysis based on the modified Riemann Liouville derivative, then we name the fractional Sumudu transform. We also establish a relationship between fractional Laplace and Sumudu via duality with complex inversion formula for fractional Sumudu transform and apply new definition to solv...

In this article, we present a fractional order HIV-1 infection model of CD4+ T-cell. We analyze the effect of the changing the average number of the viral particle N with initial conditions of the presented model. The Laplace Adomian decomposition method is applying to check the analytical solution of the problem. We obtain the solutions of the fractional order HIV-1 model in the form of infini...

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

2017
Haide Gou Baolin Li

In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition of mild solutions for the studied problem was given based on an operator family generated by the operator pair [Formula: see text] and probability density function. Com...

2012
N. H. SWEILAM M. M. KHADER

In this article, a numerical study for the fractional wave equations is introduced by using a class of finite difference methods. These methods are extension of the weighted average methods for ordinary (non-fractional) wave equations. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. Simple and ...

2018
Mark M. Meerschaert Erkan Nane P. Vellaisamy

The inverse stable subordinator is the first passage time of a standard stable subordinator with index 0 < β < 1. The probability density of the inverse stable subordinator can be used to solve time-fractional Cauchy problems, where the usual first derivative in time is replaced by a Caputo fractional derivative of order β. If the Cauchyproblemgoverns aMarkov process, then the fractional Cauchy...

2015
BORIS BAEUMER MIHÁLY KOVÁCS MARK M. MEERSCHAERT

This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fr...

In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...

ژورنال: پژوهش های ریاضی 2022
fathipour, azam, فتحی پور, اعظم,

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید