نتایج جستجو برای: cohen macaulay homological dimension
تعداد نتایج: 124130 فیلتر نتایج به سال:
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
We describe the structure of monoid natural-valued monotone functions on an arbitrary poset. For this we provide a presentation, characterization prime elements, and description its convex hull. also study associated ring, proving that it is normal, thus Cohen-Macaulay. determine Cohen-Macaulay type, characterize Gorenstein property, Gröbner basis defining ideal. Then apply these results to qua...
Let k be an algebraically closed field of characteristic zero, S = k[X0, X1, X2, X3, X4] and P = Proj(S). By a curve we always mean a closed one-dimensional subscheme of P which is locally Cohen-Macaulay and equidimensional. The main purpose of this paper is to show that arithmetically Cohen-Macaulay curves C ⊂ P lying on a “general” arithmetically Cohen-Macaulay surface X ⊂ P with degree matri...
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
in this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is cohen-macaulay. it is proved that if there exists a cover of an $r$-partite cohen-macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
The special properties of planar posets have been studied, particularly in the 1970's by I. Rival and others. More recently, the connection between posets, their corresponding polynomial rings and corresponding simplicial complexes has been studied by R. Stanley and others. This paper, using work of A. Bjorner, provides a connection between the two bodies of work, by characterizing when planar...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید