نتایج جستجو برای: completely distributive lattice
تعداد نتایج: 242297 فیلتر نتایج به سال:
The lattice Lu of upper semicontinuous convex normal functions with convolution ordering arises in studies of type-2 fuzzy sets. In 2002, Kawaguchi and Miyakoshi [Extended t-norms as logical connectives of fuzzy truth values, Multiple-Valued Logic 8(1) (2002) 53–69] showed that this lattice is a complete Heyting algebra. Later, Harding et al. [Lattices of convex, normal functions, Fuzzy Sets an...
A dcpo P is continuous if and only if the lattice C(P ) of all Scottclosed subsets of P is completely distributive. However, in the case where P is a non-continuous dcpo, little is known about the order structure of C(P ). In this paper, we study the order-theoretic properties of C(P ) for general dcpo’s P . The main results are: (i) every C(P ) is C-continuous; (ii) a complete lattice L is iso...
The normal, or Dedekind-MacNeille, completion δ(L) of a distributive lattice L need not be distributive. However, δ(L) does contain a largest distributive sublattice β(L) containing L, and δ(L) is distributive if and only if β(L) is complete if and only if δ(L) = β(L). In light of these facts, it may come as a surprise to learn that β(L) was developed (in [1]) for reasons having nothing to do w...
Let L ∗ M denote the coproduct of the bounded distributive lattices L and M . At the 1981 Banff Conference on Ordered Sets, the following question was posed: What is the largest class L of finite distributive lattices such that, for every non-trivial Boolean lattice B and every L ∈ L, B ∗ L = B ∗ L′ implies L = L′? In this note, the problem is solved.
Every lattice is isomorphic to a lattice whose elements are sets of sets and whose operations are intersection and the operation ∨∗ defined by A ∨∗ B = A ∪ B ∪ {Z : (∃X ∈ A)(∃Y ∈ B)X ∩ Y ⊆ Z}. This representation spells out precisely Birkhoff’s and Frink’s representation of arbitrary lattices, which is related to Stone’s set-theoretic representation of distributive lattices. (AMS Subject Classi...
A distributive lattice L with 0 is finitary if every interval is finite. A function f : N0 N0 is a cover function for L if every element with n lower covers has f (n) upper covers. In this paper, all finitary distributive lattices with non-decreasing cover functions are characterized. A 1975 conjecture of Richard P. Stanley is thereby settled. 2000 Academic Press
By studying two unsharp quantum structures, namely extended lattice ordered effect algebras and lattice ordered QMV algebras, we obtain some characteristic theorems of MV algebras. We go on to discuss automata theory based on these two unsharp quantum structures. In particular, we prove that an extended lattice ordered effect algebra (or a lattice ordered QMV algebra) is an MV algebra if and on...
Let S be a regular semigroup and C its lattice of congruences. We consider the sublattice Λ of C generated by σ-the least group, τ -the greatest idempotent pure, μ-the greatest idempotent separating and β-the least band congruence on S. To this end, we study the following special cases: (1) any three of these congruences generate a distributive lattice, (2) Λ is distributive, (3) the restrictio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید