نتایج جستجو برای: edge 2 rainbow domination number
تعداد نتایج: 3487625 فیلتر نتایج به سال:
My interest lies in graph theory, a young but rapidly developing subject, with close relation to many disciplines. Its results often appears succinct and surprising, its methods covers lots of branches of mathematics, and its applications extend even beyond natural science (sociology may serve as an example). It is really challenging and enjoyable to devote oneself to such a subject. So far I h...
A path in an edge colored graph G is called a rainbow path if all its edges have pairwise different colors. Then G is rainbow connected if there exists a rainbow path between every pair of vertices of G and the least number of colors needed to obtain a rainbow connected graph is the rainbow connection number. If we demand that there must exist a shortest rainbow path between every pair of verti...
The domination number of a graph is the cardinality of a smallest subset of its vertex set with the property that each vertex of the graph is in the subset or adjacent to a vertex in the subset. This graph parameter has been studied extensively since its introduction during the early 1960s and finds application in the generic setting where the vertices of the graph denote physical entities that...
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cell...
Let G be an edge-coloured graph. A rainbow subgraph in G is a subgraph such that its edges have distinct colours. The minimum colour degree δc(G) of G is the smallest number of distinct colours on the edges incidentwith a vertex ofG.We show that every edge-coloured graph G on n ≥ 7k/2 + 2 vertices with δc(G) ≥ k contains a rainbow matching of size at least k, which improves the previous result ...
An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = log n+ω ...
Domination and 2-domination numbers are defined only for graphs with non-isolated vertices. In a Graph G = (V, E) each vertex is said to dominate every in its closed neighborhood. graph G, subset S of V(G) called 2-dominating set if v ∈ V, V-S has atleast two neighbors S. The smallest cardinality known as the number γ2(G). this paper, we find some special also graphs.
An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = logn+ω n...
The inflated graph GI of a graph G with n(G) vertices is obtained from G by replacing every vertex of degree d of G by a clique, which is isomorph to the complete graph Kd, and each edge (xi, xj) of G is replaced by an edge (u, v) in such a way that u ∈ Xi, v ∈ Xj , and two different edges of G are replaced by non-adjacent edges of GI . For integer k ≥ 1, the k-tuple total domination number γ ×...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید