نتایج جستجو برای: encopresis

تعداد نتایج: 269  

2002
P. W. Hemker W. Hoffmann M. H. van Raalte

In this paper we study the convergence of a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence for different block-relaxation strategies. In addition to an earlier paper where higher-order methods were studied, here we restrict ourselves to methods using piecewise li...

2006
Ethan J. Kubatko Joannes J. Westerink Clint Dawson

In this paper, we discuss the development, verification, and application of an hp discontinuous Galerkin (DG) finite element model for solving the shallow water equations (SWE) on unstructured triangular grids. The h and p convergence properties of the method are demonstrated for both linear and highly nonlinear problems with advection dominance. Standard h-refinement for a fixed p leads to p +...

2007
P. W. Hemker W. Hoffmann M. H. van Raalte

In this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence for different block-relaxation strategies. We find that point-wise block-partitioning gives much better results than the classical cell-wise partitioning. Both for the Baumann-Oden and for th...

2005
H. Hoteit A. Firoozabadi

[1] A discrete fracture model for the flow of compressible, multicomponent fluids in homogeneous, heterogeneous, and fractured media is presented in single phase. In the numerical model we combine the mixed finite element (MFE) and the discontinuous Galerkin (DG) methods. We use the cross-flow equilibrium concept to approximate the fractured matrix mass transfer. The discrete fracture model is ...

2013
Xing He Euntaek Lee Lucas Wilcox Ramakanth Munipalli Laurent Pilon

In this article we present a high-order-accurate solver for the radiative transfer equation (RTE) which uses the discontinuous Galerkin (DG) method and is designed for graphics processing units (GPUs). The compact nature of the high-order DG method enhances scalability, particularly on GPUs. High-order spatial accuracy can be used to reduce discretization errors on a given computational mesh, a...

2016
A. Agrawal R. H. W. Hoppe AKSHAY AGRAWAL RONALD H. W. HOPPE

Recently, the use of special local test functions other than polynomials in Discontinuous Galerkin (DG) approaches has attracted a lot of attention and became known as DG-Trefftz methods. In particular, for the 2D Helmholtz equation plane waves have been used in [10] to derive an Interior Penalty (IP) type Plane Wave DG (PWDG) method and to provide an a priori error analysis of its p-version wi...

2012
JINTAO CUI WUJUN ZHANG W. ZHANG

The finite element method has been widely used to discretize the Helmholtz equation with various types of boundary conditions. The strong indefiniteness of the Helmholtz equation makes it difficult to establish stability estimates for the numerical solution. In particular, discontinuous Galerkin methods for Helmholtz equation with a high wave number result in very large matrices since they typi...

2018
José A. Morales Escalante Irene M. Gamba

We consider in this paper the mathematical and numerical modelling of reflective boundary conditions (BC) associated to Boltzmann Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modelling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical bound...

2008
B. T. Helenbrook H. L. Atkins

We investigate p-multigrid as a solution method for several different discontinuous Galerkin (DG) formulations of the Poisson equation. Different combinations of relaxation schemes and basis sets have been combined with the DG formulations to find the best performing combination. The damping factors of the schemes have been determined using Fourier analysis for both one and two-dimensional prob...

Journal: :CoRR 2015
Jose A. Morales Escalante Irene M. Gamba

We shall discuss the use of Discontinuous Galerkin (DG) Finite Element Methods to solve Boltzmann Poisson (BP) models of electron transport in semiconductor devices at nano scales. We consider the mathematical and numerical modeling of Reflective Boundary Conditions in 2D devices and their implementation in DG-BP schemes. We study the specular, diffusive and mixed reflection BC on physical boun...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید