نتایج جستجو برای: finite difference methods
تعداد نتایج: 2355082 فیلتر نتایج به سال:
We present an explicit finite-difference scheme for direct simulation of the motion of solid particles in a fluid. The method is based on a second order MacCormack finite-difference solver for the flow, and Newton’s equations for the particles. The fluid is modeled with fully compressible mass and momentum balances; the technique is intended to be used at moderate particle Reynolds number. Seve...
In this paper, we consider linear stability issues for one-dimensional hyperbolic conservation laws using a class of conservative high order upwind-biased finite difference schemes, which is a prototype for the weighted essentially non-oscillatory (WENO) schemes, for initial-boundary value problems (IBVP). The inflow boundary is treated by the so-called inverse Lax-Wendroff (ILW) or simplified ...
Implicit finite difference schemes for the 3-D wave equation using a 27-point stencil on the cubic grid are presented, for use in room acoustics modelling and artificial reverberation. The system of equations that arises from the implicit formulation is solved using the Jacobi iterative method. Numerical dispersion is analysed and computational efficiency is compared to second-order accurate 27...
To solve the heat equation on parallel computers, a high-order finite difference domain decomposition algorithm is discussed. In this procedure, interface values between subdomains are calculated by the classical explicit scheme, while interior values of sub-domains are determined by the famous forth-order compact scheme. The stability and convergence for this domain decomposition algorithm are...
Parallel finite difference schemes with high-order accuracy and unconditional stability for solving parabolic equations are presented. The schemes are based on domain decomposition method, i.e., interface values between subdomains are computed by the explicit scheme; interior values are computed by the implicit scheme. The numerical stability and error are derived in the H norm in one dimension...
The stability and convergence properties of the mimetic finite difference method for diffusion-type problems on polyhedral meshes are analyzed. The optimal convergence rates for the scalar and vector variables in the mixed formulation of the problem are proved.
The error generated by the classical upwind finite difference method on a uniform mesh, when applied to a class of singularly perturbed model ordinary differential equations with a singularly perturbed Neumann boundary condition, tends to infinity as the singular perturbation parameter tends to zero. Note that the exact solution is uniformly bounded with respect to the perturbation parameter. F...
It is important to simulate a groundwater transport process, e.g., pollutant migration, through the vadose zone and subsequent mixing within the saturated zone to assess potential impacts of contaminants in the subsurface in preliminary stages. It is challenging to simulate heterogeneous soil characteristics and non-uniform initial contaminant concentration. This paper proposes a vertically het...
The results of computations with eight explicit finite difference schemes on a suite of one-dimensional and two-dimensional test problems for the Euler equations are presented in various formats. Both dimensionally split and two-dimensional schemes are represented, as are central and upwind-biased methods, and all are at least second-order accurate.
A finite difference method is developed for solving symmetric positive differential equations in the sense of Friedrichs. The method is applicable to partial differential equations of mixed type with more general boundary conditions. The method is shown to have a convergence rate of 0(hxl2), h being the size of mesh grid. Some numerical results are presented for a model problem of forward-backw...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید