نتایج جستجو برای: fourth order exponential time differenceing runge kutta method
تعداد نتایج: 3828676 فیلتر نتایج به سال:
We present a numerical approach for generalised Korteweg-de Vries (KdV) equations on the real line. In spatial dimension we compactify line and apply Chebyshev collocation method. The time integration is performed with an implicit Runge-Kutta method of fourth order. Several examples are discussed: initial data bounded but not vanishing at infinity as well satisfying Faddeev condition, i.e. slow...
Abstract This paper aims to developed a high-order and accurate method for the solution of one-dimensional Lotka-Volterra-diffusion with Numman boundary conditions. A fourth-order compact finite difference scheme spatial part combined implicit-explicit Runge Kutta in temporal are proposed. Furthermore, points discretized by using terms fourth order accuracy. key idea proposed is take full advan...
A wavelet method is proposed for solving a class of nonlinear timedependent partial differential equations. Following this method, the nonlinear equations are first transformed into a system of ordinary differential equations by using the modified wavelet Galerkin method recently developed by the authors. Then, the classical fourth-order explicit Runge-Kutta method is employed to solve the resu...
A new composite Runge–Kutta (RK) method is proposed for semilinear partial differential equations such as Korteweg–de Vries, nonlinear Schrödinger, Kadomtsev– Petviashvili (KP), Kuramoto–Sivashinsky (KS), Cahn–Hilliard, and others having high-order derivatives in the linear term. The method uses Fourier collocation and the classical fourth-order RK method, except for the stiff linear modes, whi...
A new composite Runge–Kutta (RK) method is proposed for semilinear partial differential equations such as Korteweg–de Vries, nonlinear Schrödinger, Kadomtsev– Petviashvili (KP), Kuramoto–Sivashinsky (KS), Cahn–Hilliard, and others having high-order derivatives in the linear term. The method uses Fourier collocation and the classical fourth-order RK method, except for the stiff linear modes, whi...
The Runge–Kutta discontinuous Galerkin (RKDG) method for solving hyperbolic conservation laws is a high order finite element method, which utilizes the useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers, TVD Runge–Kutta time discretizations, and limiters. In this paper, we investigate using the RKDG finite element method for compressible...
In this paper we study a class of explicit pseudo two-step Runge-Kutta (EP-TRK) methods for rst-order ODEs for parallel computers. We investigate linear stability and derive methods with enlarged stability regions. In numerical experiments on a shared memory computer we compare a parallel variable step size EPTRK implementation with the eecient sequential Runge-Kutta method dopri5.
Systems of functional-diierential and functional equations occur in many biological, control and physics problems. They also include functional diierential equations of neutral type as special cases. In this paper we present a numerical method that is based on the continuous extension of the Runge{Kutta method (for ordinary diierential equations) and the collocation method (for functional equat...
Three dimensional flow of non-Newtonian viscoelastic fluid with the variation in the viscosity over a stretching surface is investigated. The governing partial differential equations of continuity, momemtum, energy and concentration are transformed into nonlinear ordinary differential equations by using similarity transformations. The transformed equations are solved numerically by fourth-order...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید