نتایج جستجو برای: frolicher nijenhuis bracket
تعداد نتایج: 4548 فیلتر نتایج به سال:
A new method to derive presentations of skein modules is developed. For the case of homotopy skein modules it will be shown how the topology of a 3-manifold is reflected in the structure of the module. The freeness problem for q-homotopy skein modules is solved, and a natural skein module related to linking numbers is computed.
We study the Bäcklund symmetry for the Moyal Korteweg-de Vries (KdV) hierarchy based on the Kuperschmidt-Wilson Theorem associated with second Gelfand-Dickey structure with respect to the Moyal bracket, which generalizes the result of Adler for the ordinary KdV. PACS: 02.30.Ik, 11.10.Ef
Working within the Moyal algebra, we define an index for Laurent series of smooth complex matrix-valued functions of 2d real variables. For d = 1, we prove that the index of a Laurent series is equal to a multiple of the winding number of its initial term’s determinant. For d > 1, under certain conditions, we prove that the index of a Laurent series depends only upon its initial term’s behaviou...
We build a differential calculus for subalgebras of the Moyal algebra on R4 starting from a redundant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we find a frame of 1-forms which allows to realize the complex of forms as a tensor product of the noncommutative subalgebras with the external algebra Λ. MSC: 46L87;
2 Preliminaries 5 2.1 The ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The algebra A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Algebra A and (1+1)-dimensional cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Kauffman bracket . . . . . . . . . . . . . . . . . . . ...
We extend the quasi-tree expansion of A. Champanerkar, I. Kofman, and N. Stoltzfus to not necessarily orientable ribbon graphs. We study the duality properties of the Bollobás-Riordan polynomial in terms of this expansion. As a corollary, we get a “connected state” expansion of the Kauffman bracket of virtual link diagrams. Our proofs use extensively the partial duality of S. Chmutov.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید