نتایج جستجو برای: hereditarily ell_pc_0 banach spaces
تعداد نتایج: 136982 فیلتر نتایج به سال:
The origin of Korovkin Approximation theory is the classical theorem of P.P. Korovkin (1953),which says that for a sequence (Tn) of positive linear operators on C[a, b], in order to conclude the uniform convergence of Tnf to f for all f ∈ C[a, b], it suffices to check the uniform convergence only for the three functions f ∈ {1, x, x2}. Starting from this beautiful result many mathematicians hav...
the goal of this paper is to investigate the solutionand stability in random normed spaces, in non--archimedean spacesand also in $p$--banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
We investigate various kinds of bases in infinite dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain c...
A central question in Banach space theory has been to identify the class of Banach spaces that contain almost isometric copies of the classical sequence spaces `p and c0. Banach space theory entered a new era in the mid 1970’s, when B. Tsirelson [34] constructed the first space not containing isomorphic copies any of the classical sequence spaces. Tsirelson’s space has been called “the first tr...
We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modul...
in this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the bag and samanta’s operator norm on felbin’s-type fuzzy normed spaces. in particular, the completeness of this space is studied. by some counterexamples, it is shown that the inverse mapping theorem and the banach-steinhaus’s theorem, are not valid for this fuzzy setting. also...
We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...
in this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in banach spaces admitting the existence of a lower solution.
A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exists non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a ra...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید