نتایج جستجو برای: hivaids model with fractional derivatives
تعداد نتایج: 10078091 فیلتر نتایج به سال:
Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law nonlocality, power-law long-term memory or fractal properties by using integrations and differentiation of noninteger orders, i.e., by methods in the fractional calculus. This paper is a review of physical models that look very promising for futu...
We obtain an intertwining relation between some Riemann-Liouville operators of order α ∈ (1, 2), connecting through a certain multiplicative identity in law the one-dimensional marginals of reflected completely asymmetric α−stable Lévy processes. An alternative approach based on recurrent extensions of positive self-similar Markov processes and exponential functionals of Lévy processes is also ...
In this paper, variational iteration method (VIM) is applied to solve nonlinear oscillators of fractional order. The time-fractional derivatives are described in the Jumarie’s derivative sense. The application of variational iteration method, developed for differential equations of integer order, is extended to derive explicit analytical solutions of the fractional order nonlinear oscillator’s ...
In this paper, we further discuss the properties of three kinds of fractional derivatives: the Grünwald–Letnikov derivative, the Riemann–Liouville derivative and the Caputo derivative. Especially, we compare the Riemann–Liouville derivative with the Caputo derivative. And sequential property of the Caputo derivative is also derived, which is helpful in translating the higher fractional-order di...
Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. These characteristics of the fractional derivatives make the fractional-order models more realistic and practical than the classical integer-order models. In recent years, boundary value problems for nonlinear fractional differential equations have been ad...
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
The dynamic response of an initially flat viscoelastic membrane is investigated. The viscoelastic model is described with fractional order derivatives. The membrane is subjected to surface transverse and inplane dynamic loads. The governing equations are three coupled second order nonlinear partial FDEs (fractional differential equations) of hyperbolic type in terms of the displacement componen...
We present a novel noise reduction strategy that is inspired by the physiology of the auditory brainstem. Following the hypothesis that neurons code sound based on fractional derivatives, we develop a model in which sound is transformed into a ‘neural space’. In this space sound is represented by various fractional derivatives of the envelopes in a 22 channel filter bank. We demonstrate that no...
In this paper, we have introduced a fractional-ordered predator-prey population model which has been successfully solved with the help of two powerful analytical methods, namely, Homotopy Perturbation Method (HPM) and Variational Iteration Method (VIM). The fractional derivatives are described in the Caputo sense. Using initial values, we have derived the explicit solutions of predator-prey pop...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید