نتایج جستجو برای: independent domination

تعداد نتایج: 454185  

Journal: :Discrete Applied Mathematics 2015
David Blessing Katie Johnson Christie Mauretour Erik Insko

The domination number of a graph G = (V,E) is the minimum cardinality of any subset S ⊂ V such that every vertex in V is in S or adjacent to an element of S. Finding the domination numbers of m by n grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomassé. Many variants of domination number on graphs, such as double domination number a...

Journal: :Discrete Applied Mathematics 2020

Journal: :Electr. J. Comb. 2008
Odile Favaron

A dominating set S of a graph G is a global (strong) defensive alliance if for every vertex v ∈ S, the number of neighbors v has in S plus one is at least (greater than) the number of neighbors it has in V \ S. The dominating set S is a global (strong) offensive alliance if for every vertex v ∈ V \ S, the number of neighbors v has in S is at least (greater than) the number of neighbors it has i...

Journal: :Australasian J. Combinatorics 2008
Changping Wang

A triangle-free graph is maximal if the addition of any edge produces a triangle. A set S of vertices in a graph G is called an independent dominating set if S is both an independent and a dominating set of G. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set of G. In this paper, we show that i(G) ≤ δ(G) ≤ n 2 for maximal triangle-free graph...

Journal: :Electronic Notes in Discrete Mathematics 2016
S. A. Aleid José Cáceres María Luz Puertas

Domination of grids has been proved to be a demanding task and with the addition of independence it becomes more challenging. It is known that no grid withm,n ≥ 5 has a perfect code, that is an independent vertex set such that each vertex not in it has exactly one neighbor in that set. So it is interesting to study the existence of an independent dominating set for grids that allows at most two...

Journal: :Discussiones Mathematicae Graph Theory 2015
Nawarat Ananchuen Watcharaphong Ananchuen

A subset S of V (G) is an independent dominating set of G if S is independent and each vertex of G is either in S or adjacent to some vertex of S. Let i(G) denote the minimum cardinality of an independent dominating set of G. A graph G is k-i-critical if i(G) = k, but i(G+uv) < k for any pair of non-adjacent vertices u and v of G. In this paper, we establish that if G is a connected 3-i-critica...

Journal: :Discussiones Mathematicae Graph Theory 2006
Michael D. Plummer

In this paper, we survey some new results in four areas of domination in graphs, namely: (1) the toughness and matching structure of graphs having domination number 3 and which are “critical” in the sense that if one adds any missing edge, the domination number falls to 2; (2) the matching structure of graphs having domination number 3 and which are “critical” in the sense that if one deletes a...

Journal: :Discrete Applied Mathematics 2012
Gerard J. Chang Paul Dorbec Mickaël Montassier André Raspaud

In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...

Journal: :Graphs and Combinatorics 2009
Andrei V. Gagarin Anush Poghosyan Vadim E. Zverovich

In this paper, we provide a new upper bound for the α-domination number. This result generalises the well-known Caro-Roditty bound for the domination number of a graph. The same probabilistic construction is used to generalise another well-known upper bound for the classical domination in graphs. We also prove similar upper bounds for the α-rate domination number, which combines the concepts of...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید