نتایج جستجو برای: inertial confinement fusion
تعداد نتایج: 153205 فیلتر نتایج به سال:
A unique approach for permeation filling of nonpermeable inertial confinement fusion target capsules with deuterium– tritium (DT) is presented. This process uses a permeable capsule coupled into the final target capsule with a 0.03-mmdiameter fill tube. Leak free permeation filling of glow-discharge polymerization (GDP) targets using this method have been successfully demonstrated, as well as i...
This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown tha...
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed a...
High-energy charged particles are being used to diagnose x-ray-driven implosions in inertial-confinement fusion. Recent measurements with vacuum hohlraums have resulted in quantitative characterization of important aspects of x-ray drive and capsule implosions. Comprehensive data obtained from spectrally resolved, fusion-product self-emission and time-gated proton radiographs with unprecedented...
LLE Review, Volume 80 185 In inertial confinement fusion (ICF), a spherical shell filled with a DT-gas mixture is compressed to high densities and temperatures to achieve ignition condition.1 Degradation from spherical symmetry during the implosion, however, limits the achievable compression ratios and could quench the ignition. The main source of such asymmetry is hydrodynamic instabilities (s...
Hot electrons generated by the two-plasmon–decay instability in direct-drive targets are a preheat concern. A mitigation strategy that employs a layered ablator [V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014)] has been investigated both numerically and experimentally. The numerical simulations described here predict reduced hot-electron production compared with similar targets using ei...
Modelling and mitigation of damage are crucial for safe and economical operation of high-power laser facilities. Experiments at the National Ignition Facility use a variety of targets with a range of laser energies spanning more than two orders of magnitude (∼14 kJ to ∼1.9 MJ). Low-energy inertial confinement fusion experiments are used to study early-time x-ray load symmetry on the capsule, sh...
The targets used in inertial confinement fusion (ICF) experiments at the Lawrence Livermore National Laboratory are plastic capsules roughly 0.5 mm in diameter. The capsules, which typically have wall thicknesses from 20 to 60 p, must possess extraordinary symmetry and concentricity and must have surface finishes of less than 1000 A peak-to-valley variation over surface contours of from 10 to 1...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید