Real inner product. Let V be a vector space over R. A (real) inner product is a function 〈−,−〉 : V × V → R such that • 〈x, y〉 = 〈y, x〉 for all x, y ∈ V, • 〈c1x1 + c2x2, y〉 = c1〈x1, y〉+ c2〈x2, y〉 for all x1, x2, y ∈ V, c1, c2 ∈ R, • 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 iff x = 0. That is, the pairing is symmetric, linear in the first variable (and therefore bilinear, by symmetry), and positive definite. E...