نتایج جستجو برای: k tuple total restrained domination number

تعداد نتایج: 2141912  

Journal: :transactions on combinatorics 2013
jafar amjadi hossein karami seyed mahmoud sheikholeslami lutz volkmann

a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...

Journal: :Appl. Math. Lett. 2011
Ermelinda DeLaViña Wayne Goddard Michael A. Henning Ryan Pepper Emil R. Vaughan

The k-domination number of a graph is the cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k vertices of the set. We prove two bounds on the k-domination number of a graph, inspired by two conjectures of the computer program Graffiti.pc. In particular, we show that for any graph with minimum degree at least 2k − 1, the k-domination number i...

2015
D. A. MOJDEH

A set S of vertices in a graph G = (V,E) is called a total k-distance dominating set if every vertex in V is within distance k of a vertex in S. A graph G is total k-distance domination-critical if γ t (G − x) < γ t (G) for any vertex x ∈ V (G). In this paper, we investigate some results on total k-distance domination-critical of graphs.

Journal: :CoRR 2013
Pradip Debnath

In this article we give a new definition of direct product of two arbitrary fuzzy graphs. We define the concepts of domination and total domination in this new product graph. We obtain an upper bound for the total domination number of the product fuzzy graph. Further we define the concept of total α-domination number and derive a lower bound for the total domination number of the product fuzzy ...

Journal: :Discrete Mathematics 2004
Liying Kang Hye Kyung Kim Moo Young Sohn

A function f de1ned on the vertices of a graph G = (V; E); f :V → {−1; 0; 1} is a minus dominating function if the sum of its values over any closed neighborhood is at least one. The weight of a minus dominating function is f(V ) = ∑ v∈V f(v). The minus domination number of a graph G, denoted by −(G), equals the minimum weight of a minus dominating function of G. In this paper, a sharp lower bo...

Journal: :Discrete Applied Mathematics 2012
Gerard J. Chang Paul Dorbec Mickaël Montassier André Raspaud

In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

Journal: :Discrete Applied Mathematics 2002
Sylvain Gravier

We use the link between the existence of tilings in Manhattan metric with {1}-bowls and minimum total dominating sets of Cartesian products of paths and cycles. From the existence of such a tiling, we deduce the asymptotical values of the total domination numbers of these graphs and we deduce the total domination numbers of some Cartesian products of cycles. Finally, we investigate the problem ...

2013
You Lu

Let denote the Cartesian product of graphs and A total dominating set of with no isolated vertex is a set of vertices of such that every vertex is adjacent to a vertex in The total domination number of is the minimum cardinality of a total dominating set. In this paper, we give a new lower bound of total domination number of using parameters total domination, packing and -domination numbers of ...

Journal: :Ars Comb. 2009
Teresa W. Haynes Michael A. Henning

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید