نتایج جستجو برای: large margin
تعداد نتایج: 1058648 فیلتر نتایج به سال:
We perform large margin training of HMM acoustic parameters by maximizing a penalty function which combines two terms. The first term is a scale which gets multiplied with the Hamming distance between HMM state sequences to form a multi-label (or sequence) margin. The second term arises from constraints on the training data that the joint log-likelihoods of acoustic and correct word sequences e...
Minimizing the binary classification error with a linear model leads to an NP-hard problem. In practice, surrogate loss functions are used, in particular loss functions leading to large margin classification such as the hinge loss and the ramp loss. The intuitive large margin concept is theoretically supported by generalization bounds linking the expected classification error to the empirical m...
Abstract We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes supervised training of Markov random fields and weighted context-free grammars as special cases. We describe an algorithm that solves the large-margin optimization problem defined in [12], using an exponential-fami...
We discuss the problem of ranking instances where an instance is associated with an integer from 1 to k. In other words, the specialization of the general multi-class learning problem when there exists an ordering among the instances — a problem known as “ordinal regression” or “ranking learning”. This problem arises in various settings both in visual recognition and other information retrieval...
We introduce into the classical perceptron algorithm with margin a mechanism that shrinks the current weight vector as a first step of the update. If the shrinking factor is constant the resulting algorithm may be regarded as a margin-error-driven version of NORMA with constant learning rate. In this case we show that the allowed strength of shrinking depends on the value of the maximum margin....
Conditional random field (CRF) formulations for singlemicrophone speech separation are improved by large-margin parameter estimation. Speech sources are represented by acoustic state sequences from speaker-dependent acoustic models. The large-margin technique improves the classification accuracy of acoustic states by reducing generalization error in the training phase. Non-linear mappings inspi...
In the context of signal classification, this paper assembles and compares criteria to easily judge the discrimination quality of a set of feature vectors. The quality measures are based on the assumption that a Support Vector Machine is used for the final classification. Thus, the ultimate criterion is a large margin separating the two classes. We apply the criteria to control the feature extr...
Online learning algorithms such as perceptron and MIRA have become popular for many NLP tasks thanks to their simpler architecture and faster convergence over batch learning methods. However, while batch learning such as CRF is easily parallelizable, online learning is much harder to parallelize: previous efforts often witness a decrease in the converged accuracy, and the speedup is typically v...
Gaussian mixture models (GMM) have been widely and successfully used in speaker recognition during the last decade. However, they are generally trained using the generative criterion of maximum likelihood estimation. In this paper, we propose a simple and efficient discriminative approach to learn GMM with a large margin criterion to solve the classification problem. Our approach is based on a ...
We show how to learn aMahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to signif...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید