نتایج جستجو برای: linear differential equations with variable coefficients

تعداد نتایج: 9597787  

2015
Mohammad Zamani Nejad Mehdi Jabbari Mehdi Ghannad

Using multi-layers method (MLM), a semi-analytical solution have been derived for determination of displacements and stresses in a thick cylindrical shell with variable thickness under non-uniform pressure. Three different profiles (convex, linear and concave) are considered for the variable thickness cylinder. Given the existence of shear stress in the thick cylindrical shell due to thickness ...

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

2003
Zhenya Yan

In this paper based on a system of Riccati equations with variable coefficients, we presented a new Riccati equation with variable coefficients expansion method and its algorithm, which are direct and more powerful than the tanh-function method, sine-cosine method, the generalized hyperbolic-function method and the generalized Riccat equation with constant coefficient expansion method to constr...

The present paper provides a semi-analytical solution to obtain the displacements and stresses in a functionally graded material (FGM) rotating thick cylindrical shell with clamped ends under non-uniform pressure. Material properties of cylinder are assumed to change along the axial direction according to a power law form. It is also assumed that the Poisson’s ratio is constant. Given the exist...

Journal: :J. Symb. Comput. 1991
Michael F. Singer

Let L(y) = b be a linear differential equation with coefficients in a differential field K. We discuss the problem of deciding if such an equation has a non-zero solution in K and give a decision procedure in case K is an elementary extension of the field of rational functions or is an algebraic extension of a transcendental liouvillian extension of the field of rational functions. We show how ...

2006
Gro Hovhannisyan

We improve, simplify, and extend on quasi-linear case some results on asymptotical stability of ordinary second-order differential equations with complex-valued coefficients obtained in our previous paper [G.R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients, Electron. J. Differential Equations 2004 (85) (2004) 1–20]. To prove asymptotic stab...

2015
DOUGLAS R. ANDERSON Allan Peterson

We establish the Hyers-Ulam stability of certain first-order linear differential equations where the coefficients are allowed to vanish. We then extend these results to higher-order linear differential equations with vanishing coefficients that can be written with these first-order factors. AMS (MOS) Subject Classification. 34A30, 34A05, 34D20.

Journal: :Applied Mathematics and Computation 2007
B. Bonilla Margarita Rivero Juan J. Trujillo

This paper deals with the study of linear systems of fractional differential equations such as the following system: 0096-3 doi:10 * Co E-m Y ða 1⁄4 AðxÞY þ BðxÞ; ð1Þ where Y ða is the Riemann–Liouville or the Caputo fractional derivative of order a (0 < a 5 1), and AðxÞ 1⁄4 a11ðxÞ a1nðxÞ . . . . . . . . . an1ðxÞ annðxÞ 0BBBBBB@ 1CCCCCCA; BðxÞ 1⁄4 b1ðxÞ . . . . . . . . . bnðxÞ 0BBBBBB@ 1CCCCCCA...

2005
AURELI ALABERT MARCO FERRANTE

We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue mea...

2011
XIANG DONG YANG JIN TU

where the coefficients are entire functions. In [8], equations of the form (1) with coefficients in weighted Bergman or Hardy spaces are studied. The direct problem is proved, that is, if the coefficients aj(z), j = 0, ..., k − 1 of (1) belong to the weighted Bergman space, then all solutions are of finite order of growth and belong to weighted Bergman space. The inverse problem is also investi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید