نتایج جستجو برای: pabon lasso model
تعداد نتایج: 2106796 فیلتر نتایج به سال:
Given n noisy samples with p dimensions, where n ≪ p, we show that the multi-step thresholding procedure based on the Lasso – we call it the Thresholded Lasso, can accurately estimate a sparse vector β ∈ R in a linear model Y = Xβ + ǫ, where Xn×p is a design matrix normalized to have column l2 norm √ n, and ǫ ∼ N(0, σ2In). We show that under the restricted eigenvalue (RE) condition (Bickel-Rito...
Mining of gene expression data to identify genes associated with patient survival is an ongoing problem in cancer prognostic studies using microarrays in order to use such genes to achieve more accurate prognoses. The least absolute shrinkage and selection operator (lasso) is often used for gene selection and parameter estimation in high-dimensional microarray data. The lasso shrinks some of th...
Lasso is a popular method for high-dimensional variable selection, but it hinges on a tuning parameter that is difficult to calibrate in practice. In this study, we introduce TREX, an alternative to Lasso with an inherent calibration to all aspects of the model. This adaptation to the entire model renders TREX an estimator that does not require any calibration of tuning parameters. We show that...
We study the distribution of the adaptive LASSO estimator (Zou (2006)) in finite samples as well as in the large-sample limit. The largesample distributions are derived both for the case where the adaptive LASSO estimator is tuned to perform conservative model selection as well as for the case where the tuning results in consistent model selection. We show that the finite-sample as well as the ...
In variable or graph selection problems, finding a right-sized model or controlling the number of false positives is notoriously difficult. Recently, a meta-algorithm called Stability Selection was proposed that can provide reliable finite-sample control of the number of false positives. Its benefits were demonstrated when used in conjunction with the lasso and orthogonal matching pursuit algor...
The Lasso is a cornerstone of modern multivariate data analysis, yet its performance suffers in the common situation in which covariates are correlated. This limitation has led to a growing number of Preconditioned Lasso algorithms that pre-multiply X and y by matrices PX , Py prior to running the standard Lasso. A direct comparison of these and similar Lasso-style algorithms to the original La...
We present a framework for hyperspectral image (HSI) analysis validation, specifically abundance fraction estimation based on HSI measurements of water soluble dye mixtures printed on microarray chips. In our work we focus on the performance of two algorithms, the Least Absolute Shrinkage and Selection Operator (LASSO) and the Spatial LASSO (SPLASSO). The LASSO is a well known statistical metho...
We consider the least-square regression problem with regularization by a block 1-norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1-norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید